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Abstract. This article introduces a self-stabilizing deadlock-detection
algorithm for the OR model. The algorithm is complete, because it de-
tects all deadlocks, and it is correct, because it does not detect false
deadlocks. Because of the self-stabilization property, the algorithm sup-
ports dynamic changes in the wait-for graph on which it works, and
transient faults; also, it can be started in an arbitrary state. Previous
deadlock-detection algorithms for the OR model are not guaranteed to
recover from transient faults, nor can they be started in an arbitrary
state. Once the algorithm terminates, each process knows if it is or not
deadlocked; moreover, deadlocked processes know whether they cause or
only suffer from deadlock.

1 Introduction

One of the main motivations to build distributed systems is the possibility of
sharing resources among several processes. A process can acquire and release
resources in a sequence that is unknown beforehand. The deadlock problem
arises in this setting; being able to detect deadlocks is the first step to take
actions and resolve them. A set of processes is said to be deadlocked when each
process in the set is blocked, waiting for resources assigned to other processes
in the same set. The presence of a deadlock is a stable property of a system;
once a set of processes becomes deadlocked, it will remain in that state unless a
resolution action is taken.

Knapp classified the deadlock-detection problem in six models, according to
the type of requirements a process can make [1]; for most models, deadlock-
detection algorithms have been proposed. Under the single-outstanding-request
model, a process can request only one resource at a time [2]. Under the AND
model, a process can request multiple resources simultaneously; requirements are
satisfied when all the requested resources are assigned [2,3]. Under the OR model,
a process also can request multiple resources simultaneously, but requirements
are satisfied when any of the requested resources is assigned [4,5,6,7]. Under the
AND/OR model, a process can request any number of resources in an arbitrary
combination of AND and OR requirements [8]. Under the n-out-of-k model, a
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requirement for n resources is satisfied when k of them are assigned [9]. Under
the unrestricted model, no assumption is made about the way in which a process
makes its requirements.

Since Dijkstra introduced the concept of self-stabilization in 1974 [10], sev-
eral self-stabilizing algorithms have been proposed, to solve many problems in
distributed systems. Mutual exclusion and leader election are among the classi-
cal problems solved with this approach. Schneider wrote an early survey on the
subject [11]. In general, a system is said to be self-stabilizing if, regardless of
its initial global state, it reaches a legitimate global state in a finite number of
steps [10]. The global state of a distributed system is the cartesian product of the
local states of every process in the system. The definition of legitimate and ille-
gitimate global states depends on the context of the problem being solved. The
ability of regaining a legitimate global state that these systems present, makes
them able to support transient faults. A transient fault is one that occurs once,
and ceases to occur. Furthermore, self-stabilizing systems can be started in an
arbitrary global state, even illegitimate ones, since they will reach a legitimate
state nonetheless.

The dynamic nature of resource competition, in which processes are involved
in a distributed system, makes the deadlock-detection problem suitable to be
treated from a self-stabilizing perspective. In addition, transient-fault tolerance
is a desirable property for a distributed deadlock-detection algorithm.

2 The OR Model

This article presents a self-stabilizing deadlock-detection algorithm for the OR
requirement model. A process can make an OR request, for example, in a repli-
cated distributed database system, where a read request for a replicated element
is satisfied when any copy is read [1]. Also, in a store-and-forward communica-
tions network, packets can be forwarded whenever any buffer at the destination
node is free [5]. In a similar way, in a message-routing system based on wormhole
routing, a router can forward a received message to a neighbor router through
one of several channels [12]; a requirement for an output channel is satisfied
when any of them becomes available.

A useful way to represent resource requirements is by means of a directed
graph, known as Wait-For Graph (WFG). In a WFG, each node represents a
process in the system. Nodes with outgoing edges represent blocked processes,
waiting for resources. On the contrary, nodes without outgoing edges represent
active processes. An edge from node i to node j means that process i is waiting for
a resource assigned to process j. In general, the deadlock-detection problem can
be reduced to that of detecting cyclic structures on this graph. For example, the
presence of a directed cycle in the WFG is a necessary and sufficient condition for
the existence of deadlock under the AND model [1]. In Fig. 1(a), processes 1, 2,
and 3 form a cycle, and are deadlocked.

Under the OR requirement model, the presence of a cycle in the WFG is a
necessary — but not sufficient — condition for a deadlock to exist. If the edges
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Fig. 1. Examples of deadlock. (a) Processes 1, 2, and 3 form a cycle, and are deadlocked
under the AND model. (b) Processes 1, 2, 3, and 4 form a knot, and are deadlocked
under the OR model. Processes 5, 6, 7, and 8, only suffer from deadlock.

represent OR requirements, there is no deadlock in Fig. 1(a), in spite of the
cycle, because process 1 is waiting for the resource assigned to process 2 or the
resource assigned to process 4.

Under the OR requirement model, a process is blocked if it has a pending OR
requirement. A set of processes is deadlocked, if they form a tie in the WFG, and
all of them are blocked. A tie in a graph is a set of nodes with no directed edges
going to nodes outside the set. Another important notion is that of a knot in
the WFG [13]. A node v is in a knot, if all nodes that are reachable from v by a
directed path, can reach node v by a directed path; in that case, the knot is the
set of nodes that are reachable from v. That is, a knot is a strongly connected
component; moreover, a knot is a tie of blocked processes of which any subset is
not a tie. Also, any tie of blocked processes contains at least one knot [5]; there
is a path from every node in that tie to at least one knot.

Under the OR requirement model, deadlocked processes can be sorted into
two groups. A process suffers from deadlock if it is in a tie. A process causes a
deadlock if it is in a knot. According to these definitions, a process that causes
a deadlock also suffers from deadlock. For example, in Fig. 1(b), all processes
form a tie of blocked processes. Processes 1, 2, 3, and 4 form a knot, they are
deadlocked, and they all cause deadlock. Processes 5, 6, 7, and 8, on the other
hand, are not in a knot; they do not cause deadlock, but they are deadlocked
nonetheless; they only suffer from deadlock. The distinction is important when
trying to resolve the deadlock. In order to resolve all deadlocks, a process from
each knot must be terminated; it would not help to kill processes that only suffer
from deadlock.

Chandy, Misra, and Haas have proposed an algorithm to detect deadlocks un-
der the OR model, based on the technique known as diffusing computations [4].
In their proposal, a process starts the algorithm when a request is not granted.
Upon termination, a process is guaranteed to know that it is deadlocked only if it
was deadlocked when the algorithm started. Nonetheless, in a set of deadlocked
processes, at least one of them is able to report it. Cidon, Jaffe, and Sidi [5] pro-
posed an algorithm based on detecting cycles of connected components, which
they call clusters, and merging them into bigger clusters until a knot is found.
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All processes that cause deadlock are detected. In the algorithm proposed by
Lee and Lee [6], the initiator builds a reduced WFG locally, through receiving
the paths from its successors. The initiator uses this graph to decide whether
there is deadlock or not. The algorithm proposed by Natarajan [7] is based on
the same principle as the one by Chandy, Misra, and Haas, but uses a periodic
protocol that allows the choice of exactly one process from a deadlocked set of
processes to report the deadlock. Some of these algorithms are dynamic, because
they support changes in the WFG; however, they are not guaranteed to recover
from transient faults, nor can they be started in an arbitrary state.

In the algorithm proposed in this paper, processes gather enough information
about their successors to detect deadlocks. A process that is not deadlocked
when the algorithm starts, but becomes deadlocked later, is able to report the
deadlock. Thus, in a set of deadlocked processes, every process is able to report it.
Additionally, each deadlocked process can decide if it is deadlocked because it is
part of a knot, or because it only suffers from deadlock. The algorithm supports
dynamic changes in the WFG; furthermore, it supports transient faults and can
be started in an arbitrary state.

3 Self-stabilization

In a distributed system, processes are connected to each other according to some
underlying network topology, which may be defined by virtual connections on
top of a transport protocol. Each process has its own set of local variables, and
can communicate with any other process through those connections. The local
variables define the state of a process. A process might decide to change its local
state depending on its current state and the state of some other processes. In
a distributed system, a process can learn the state of other processes through
message passing. The ability to change state is called a privilege; a process that
has a privilege is called a privileged process. In a step, a privileged process changes
its local state.

The cartesian product of the local states of every process defines the global
state of the system. Global states can be sorted into two sets: legitimate and
illegitimate. A self-stabilizing system converges in a finite number of steps to a
legitimate global state, regardless of whether its initial global state is legitimate
or not. It is because of this property that self-stabilizing systems can support
transient faults. A transient fault is one that changes the local state but not the
behavior of a process, and does not continue to occur. Even if a transient fault
puts the system in an illegitimate global state, the system will eventually regain
a legitimate global state. In addition, it is not necessary to define an initial global
state, that is, local variables can be initialized arbitrarily.

In the system defined by the algorithm proposed in this paper, legitimate
global states are characterized by the absence of privileges, and by the fact that
a process decides that it is deadlocked if and only if it is really deadlocked. In
a legitimate global state, every resource request that is not granted and every
release of a resource pushes the system into an illegitimate global state, because
new privileges appear in the system every time the WFG changes.
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Flatebo and Datta [2], and Karaata and Line [3], have proposed self-stabili-
zing algorithms to solve the deadlock-detection problem under the AND model.
Deadlocks are detected by finding cycles in the WFG; each node propagates the
information about its predecessor nodes to its successors [3], or the information
about its successors to its predecessors [2]. If a predecessor of a node is also a
successor of the node, or viceversa, then there is a cycle in the WFG and a dead-
lock in the system. In both proposals, a global state is legitimate when a process
knows that it is deadlocked if and only if it is deadlocked. In both proposals,
a change in the WFG puts the system in an illegitimate state; the algorithms
support changes produced by the processes that share resources. Moreover, the
algorithm proposed by Karaata and Line [3] supports transient faults and arbi-
trary initialization; on the other hand, the algorithm proposed by Flatebo and
Datta [2] does not.

Schneider provided a formalism to prove that a system is self-stabilizing with
respect to a predicate over the global states of the system [11]. This state predi-
cate identifies the correct operation of the system, by defining legitimate states.
Every state that satisfies the predicate is legitimate, and states that do not
satisfy the predicate are illegitimate. According to Schneider, a system is self-
stabilizing with respect to a state predicate P , if it satisfies two properties: clo-
sure and convergence. The closure property says that, once the system reaches a
state satisfying P , it cannot reach an illegitimate state through execution of the
program. The convergence property says that, starting from an arbitrary global
state, the system will reach a state satisfying P in a finite number of steps. In
this paper, this formalism is used to prove the property of self-stabilization.

4 Self-stabilizing Deadlock Detection

The proposed algorithm is shown in Fig. 2.
Processes make requests for a resource to a distributed component called

resource allocator. Whenever a resource allocator receives a request, the resource
is assigned locally if it is available. In the other case, the request can not be
satisfied.

The algorithm starts at a process, when a request is not granted. The request-
ing process blocks, and control is transferred to a thread that runs the detection
algorithm. These threads maintain exact, up-to-date information about their
neighbors in the WFG. The set of neighbors of a node v changes when one of
them releases a resource, which is then reallocated to some waiting node. If it
is reallocated to v, v is no longer blocked; otherwise, it has a different set of
neighbors. The resource allocator can inform the detection-algorithm thread of
these changes through atomic updates of the local variables Succ and Pred. No
other event can change the set of neighbors, since the process is blocked.

4.1 Variables

Each process mantains eight local variables when executing the algorithm: Succ,
Pred, Succ∗, Pred∗, Deadlocked∗, Knot, Tie, and deadlocked, which it can read
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For node i:

(0.1) if Succ = ∅ ∧ (Succ∗ �= ∅ ∨ Deadlocked∗ �= ∅ ∨ Knot �= ∅ ∨ T ie �= ∅)
then Succ∗ := ∅; Deadlocked∗ := ∅; Knot := ∅; T ie := ∅

(1.1) if Succ∗ �= (∪j∈SuccSucc∗j ) ∪ Succ
then Succ∗ := (∪j∈SuccSucc∗j ) ∪ Succ

(1.2) if Pred∗ �= (∪j∈PredPred∗
j ) ∪ Pred

then Pred∗ := (∪j∈PredPred∗
j ) ∪ Pred

(2.1) if Succ∗ �= ∅ ∧ Knot �= {i} ∧ Succ∗ ⊆ Pred∗

then Knot := {i}
(2.2) if Knot �= ∅ ∧ Succ∗ �⊆ Pred∗

then Knot := ∅
(2.3) if Succ∗ �= ∅ ∧ T ie �= {i} ∧ Succ∗ ⊆ (Deadlocked∗ ∪ Pred∗)

then T ie := {i}
(2.4) if T ie �= ∅ ∧ Succ∗ �⊆ (Deadlocked∗ ∪ Pred∗)

then T ie := ∅
(2.5) if Succ∗ �= ∅ ∧ Deadlocked∗ �= ((∪j∈SuccDeadlocked∗

j ) − {i}) ∪ Knot ∪ T ie
then Deadlocked∗ := ((∪j∈SuccDeadlocked∗

j ) − {i}) ∪ Knot ∪ T ie
(3.1) if Succ∗ �= ∅ ∧ (Succ∗ ⊆ Deadlocked∗) �= deadlocked

then deadlocked := (Succ∗ ⊆ Deadlocked∗)

Fig. 2. The deadlock-detection algorithm

and write. Also, it is assumed that each process has read-only access to the local
variables Succ∗, Pred∗, and Deadlocked∗ of its neighbors. Since the algorithm is
self-stabilizing, there is no need to set specific initial values for the variables.

Variable Succ represents the set of successors of the node i that is executing
the algorithm, while variable Pred represents the set of its predecessors. Variable
Succ∗ represents the set of nodes that are reachable from the node i that is
executing the algorithm, while variable Pred∗ represents the set of nodes that
reach node i. Variable Deadlocked∗ represent the set of reachable nodes that
are probably deadlocked. Variables Knot and Tie are sets, and by execution
of the algorithm can get two values: empty, or the identifier of the node that
is executing the algorithm. Boolean variable deadlocked indicate whether the
process that is executing the algorithm is deadlocked or not.

Transient faults can change the value of any variable but Succ and Pred, which
are kept up to date by the resource allocator, and represent the view that a node
has of the local connections on the WFG.

4.2 Notation

Each step of the algorithm is written as a guarded command. The guard is a
predicate over the variables that the process can read: its own local variables
and the ones from its neighbors. If the predicate is true, then there is a privi-
lege in the system, and it is possible to execute the associated action. Actions
are executed atomically until there are no more true guards at the node, with
the non-local variables being read once, before evaluating the guards. When there
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are more than one true guard at a node, the action executed is always the one
with minor number.

In Fig. 2 variable i represents the identifier of the process that is executing
the algorithm. The local variables of neighbor j are represented as Succ∗j , Pred∗

j ,
and Deadlocked∗

j .

4.3 The Algorithm

The algorithm begins at a node i when the process blocks waiting for resources
and, therefore, it acquires a set of successors. Step (1.1) locally computes the
set Succ∗, using the information available in variable Succ and the information
in variable Succ∗ of every successor. Because of this step, any change in the
set Succ is reflected in the local variable Succ∗, and propagated to predeces-
sors nodes. In a symilar manner, step (1.2) computes the set Pred∗ using the
information available in variable Pred and the information in variable Pred∗ of
every successor.

Step (2.1) sets the local variable Knot to a set with i as its only element, when
all successors of i are also its predecessors. Step (2.2) sets the local variable Knot
to empty when i has at least one successor node that is not a predecessor at the
same time.

Step (2.3) sets the local variable T ie to a set with i as its only element, when
all successors of i are deadlocked, or can reach i back. If that is not the case,
step (2.4) sets the local variable T ie to empty.

Step (2.5) includes in local variable Deadlocked∗ the information in variables
Knot and T ie, and the information in variables Deadlocked∗ of every successor,
and propagates this information to predecessor nodes.

Step (3.1) allows a node to decide whether it is deadlocked or not, setting
boolean variable deadlocked accordingly.

When a blocked process becomes active, step (0.1) reset all variables that
depend on Succ back to empty.

5 Properties of the Algorithm

This section proves the main theorem of this paper, which states that the pro-
posed algorithm is complete, correct, and self stabilizing.

Lemma 1. Once there are no privileges in the system, the following three state-
ments are equivalent:

1. There is a path from node i to node j in the WFG
2. j ∈ Succ∗i
3. i ∈ Pred∗j

Proof. (1⇒2) Assume there are no privileges in the system, and there is a path
x0, x1, . . . , xn−1, xn in the WFG, with x0 = i and xn = j. The local resource
allocator ensures that j ∈ Succxn−1. If j �∈ Succ∗xn−1

then node xn−1 would be
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privileged; the guard from step (1.1) would be true. Since there are no privileges
in the system, j ∈ Succ∗xn−1

. Following the same reasoning, j ∈ Succ∗xn−2
, or else

xn−2 would be privileged. The same is true for all nodes in the path, including i.
(1⇒3) The proof is similar to the one given for (1⇒2). The local resource

allocator ensures that i ∈ Predx1 , so i ∈ Pred∗x1
or else x1 would be privileged.

The same is true for all nodes in the path, including j.
(2⇒1) Let j ∈ Succ∗i . Then, j ∈ Succi or j ∈ Succ∗k for some k ∈ Succi, or

else i would be privileged. If j ∈ Succi then there is a path of length 1 from i to
j in the WFG. Otherwise, if j ∈ Succ∗k then j ∈ Succk or j ∈ Succ∗k′ , for some
k′ ∈ Succk. If j ∈ Succk then there is a path of length 1 from k to j, and a
path of length 2 from i to j. When there is a node m such that j ∈ Succm, it is
possible to find a path from i to j in the WFG. Note that there is always a node
m such that j ∈ Succm, or else j would never be included in a variable Succ∗.

(3⇒1) The proof is similar to the one given for (2⇒1). ��
Lemma 2. Once there are no privileges in the system, if node i causes deadlock
then deadlockedi = true.

Proof. If node i causes deadlock, then it is in a knot. All nodes that are reachable
from i by a directed path in the WFG are in variable Succ∗i (by Lemma 1). All
nodes that reach i by a directed path in the WFG are in variable Pred∗i (by
Lemma 1). Since i is in a knot, all reachable nodes from i can reach i back. Then
Succ∗i ⊆ Pred∗i and, after one execution of step (2.1), Knoti = {i}. This is also
true for all nodes in the knot, that is, Knotj = {j} for all j in Succ∗i .

Because of step (2.5), j ∈ Deadlocked∗j for all nodes j such Knotj = {j}.
The information that each node keeps in variable Deadlocked∗ is propagated
backwards in the graph in step (2.5), just like the information in variable Succ∗

in step (1.1).
Once there are no privileges in the system, all nodes in Succ∗i are also in

Deadlocked∗i . Therefore, Succ∗i ⊆ Deadlocked∗i and, after one execution of step
(3.1), variable deadlockedi = true. ��

Theorem 1 (Completeness). Once there are no privileges in the system, if
node i suffers from deadlock then deadlockedi = true.

Proof. If node i suffers from deadlock, then it is in a tie of blocked processes in
the WFG. Let dik be the length of the longest simple path from i to a reachable
knot k that does not include edges in k. There is at least one reachable knot.
Let di be the maximum dik over all k. If di = 0 then i belongs to a knot and
deadlockedi = true by Lemma 2. If di = n > 0 then for all successors v of i,
dv < n or there is a path from v to i. For if dv ≥ n and there is no path from
v to i, there would be a longer path from i to a knot through v, and di would
be strictly larger than n. Inductively, if dv < n then deadlockedv = true and
v ∈ Deadlocked∗v. Because of step (2.5), the information in variable Deadlocked∗

is propagated backwards in the WFG so, in time, v ∈ Deadlocked∗i . If dv ≥ n,
then v ∈ Pred∗i by Lemma 1. Hence, at some time, every successor v of i belonged
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to Deadlocked∗i or v ∈ Pred∗i . Thus, the guard of step (2.3) had to be true and
after the execution of the step, T iei = {i}. This is true for all nodes in the tie.

Since all nodes j in Succ∗i are in the tie, T iej = {j}. Because of step (2.5), j ∈
Deadlocked∗j and, in time, j ∈ Deadlocked∗i . Therefore, Succ∗i ⊆ Deadlocked∗i
and, after one execution of step (3.1), variable deadlockedi = true. ��
Theorem 2 (Correctness). Once there are no privileges in the system, if
deadlockedi = true then node i suffers from deadlock.

Proof. Let deadlockedi = true and suppose that i does not suffer from deadlock.
Since i does not suffer from deadlock, then it reaches a node j that is not blocked.
Thus j ∈ Succ∗i (by Lemma 1). Since j is not blocked, Succj = ∅. Because of step
(0.1), Deadlocked∗j = ∅, Knotj = ∅ and T iej = ∅. Because of step (2.5), no other
node appart from j can include j in its own variable Deadlocked∗, and j can not
execute step (2.5) because Succ∗j = ∅. Thus, j can not be included in variable
Deadlocked∗ at any node, in particular i. Then, j /∈ Deadlocked∗i and j ∈ Succ∗i ,
that is Succ∗i �⊆ Deadlocked∗i . Because of step (3.1), variable deadlocked can not
be true, or i would be privileged. Since there are no privileges, deadlockedi must
be false, leading to a contradiction. ��
Lemma 3. A privileged node looses its privilege in a finite number of steps.

Proof. A privileged node has at least one true guard. After the execution of one
step, the guard associated to that step becomes false.

If the execution of a step could make true guards associated to later steps
then, in the worst case, each step will be executed once and, eventually, the
privilege will be lost.

In the proposed algorithm all steps can only make true guards associated to
later steps. The only exception is step (2.5) which could also make true the guard
of step (2.3) or the guard of step (2.4). Note that the guards of steps (2.3) and
(2.4) can not be both true at the same time.

If after one execution of step (2.5) the guard of step (2.3) becomes true, then
Succ∗ ⊆ Deadlocked∗ ∪ Pred∗. After the execution of step (2.3), T ie = {i}
and the guard of step (2.5) could become true again. If step (2.5) is executed
again, the value of variable T ie does not change, and variable Deadlocked∗ now
includes i. The guard of step (2.3) can not become true again, because variable
T ie has not changed. The guard of step (2.4) can not become true because
Succ ⊆ Deadlocked∗ ∪ Pred∗ still holds.

On the other hand, if after one execution of step (2.5) the guard of step (2.4)
becomes true, then Succ∗ �⊆ Deadlocked∗ ∪ Pred∗. After the execution of step
(2.4), T ie = ∅ and the guard of step (2.5) could become true again. If step
(2.5) is executed again, the value of variable T ie does not change, and variable
Deadlocked∗ now does not includes i. The guard of step (2.4) can not become
true again, because variable T ie has not changed. The guard of step (2.3) can
not become true because Succ �⊆ Deadlocked∗ ∪ Pred∗ still holds.

Since the execution of one step can only make true a finite number of guards,
then a privileged node looses its privilege after a finite number of steps. ��
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When a privileged node changes its state and produces privileges in neighbour
nodes, it is called a propagation of privilege in this paper.

A node can propagate privileges only when it changes its local variables
Deadlocked∗, Succ∗, and Pred∗. These variables can change initially when the
WFG is modified.

Changes in variables Deadlocked∗ and Succ∗ can only propagate privileges
to predecessor nodes; changes in variable Pred∗ can only propagate privileges
to successor nodes. These privileges can not be propagated indefinitely, because
once a node has received the privilege and updated its local variables, it will not
receive the privilege because of the same change again.

A transient fault can generate privileges at a node. These privileges will be
used locally (by Lemma 3) and will not be propagated. Thus, the effects of
transient faults are always corrected locally by the algorithm.

This observation along with Lemma 3 conclude the following theorem.

Theorem 3 (Extintion of privileges). Privileges produced in the system are
eventually lost.

An algorithm is said to be self-stabilizing with respect to a state predicate P if it
satisfies the properties of closure and convergence, as defined by Schneider [11].
In the system defined by the proposed algorithm, legitimate states are defined
by the following predicate:

P: There are no privileges in the system and, for every node i,
deadlockedi = true if and only if i forms part of a tie in the WFG.

The following two lemmas show that P satisfies both the closure and convergence
properties.

Lemma 4 (Closure). Once P is established, it is not falsified by execution of
the algorithm.

Proof. When P becomes true, there are no privileges in the system; therefore, no
actions are executed and the state remains the same. Hence P is not falsified. ��
Lemma 5 (Convergence). Starting from an arbitrary initial state, once tran-
sient faults cease to occur, the system reaches a global state satisfying P within
a finite number of steps.

Proof. By Theorem 3, privileges eventually disappear from the system. There-
fore, the first part of P is satisfied. Once there are no privileges in the system,
by Theorems 1 and 2, the second part of P is satisfied. Hence P holds after a
finite number of steps, once transient faults cease to occur. ��
Lemmas 4 and 5 prove the following theorem.

Theorem 4 (Self-stabilization). The proposed algorithm is a self-stabilizing
deadlock-detection algorithm under the OR requirement model.
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6 Deadlock Resolution

In order to resolve a deadlock, at least one of the deadlocked processes must
be terminated. Therefore, once a deadlock is detected, it becomes necessary to
choose a victim to terminate. Terminating just any process does not necessarily
resolve the deadlock. In Fig. 1(b), if process 5 were terminated, there would still
be deadlock, because the knot in the WFG remains. To resolve a deadlock, it is
not enough to kill a process that only suffers from deadlock; it is necessary to
terminate one process from each knot.

Once there are no privileges in the system, each process knows whether it is
deadlocked or not. And, in addition, deadlocked processes also know whether
they are part of a knot or not. Variables Knot and Tie compute precisely that
information. Processes that are part of a knot can start an algorithm to choose
a victim such that, when terminated, the knot disappears.

Processes that are part of a knot have the same set of successors, formed by
all processes in the knot. Thus, if all the nodes in the knot apply a rule —like
victim = min(Succ∗)— it is possible to choose exactly one victim to terminate
from each knot.

No special actions need to be taken once a deadlock has been resolved. The
immediate predecessors of the terminated processes would see a change in their
variable Succ, and the detection algorithm would recompute for the new WFG.

7 Concluding Remarks

This article presents a self-stabilizing deadlock-detection algorithm for the OR
requirement model. The algorithm is self-stabilizing, that is, it supports changes
to the WFG, transient faults, and arbitrary initialization; previous algorithms
for the OR model are not guaranteed to recover from transient faults or arbi-
trary initialization. The algorithm is complete and correct since it detects all
deadlocks and it detects no false deadlocks, respectively. Hence, every process
knows whether it is deadlocked or not and, moreover, deadlocked processes know
whether they cause or only suffer from deadlock. In addition, the algorithm pro-
vides enough local information to implement actions and resolve the deadlocks
detected.
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