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1.1 Motivation

In recent years, software applications have evolved from monolithic, stable, centralized and
structured applications, to highly decentralized, distributed and dynamic software. This evolu-
tion has naturally enforced a change in the development process of such software.

The practice of building in-house software for specific purposes, turned to the development
of small pieces of encapsulated code implementing specific tasks that can be reused in different
applications, that were known as “off-the-shelf” components. Moreover, these software compo-
nents, that gave base to the concept of component-based software development, could be indepen-
dently developed and provided by third parties, decentralizing, at least partly, the development
process. This practice reduced the necessity of rewriting commonly used tasks, helped to cope
with changing requirements, and focused in an intelligent separation of tasks that are delegated
to software components, that are glued together to create the new application [DNGM+08].

However, in that situation, the ownership and the management of the application are still in
the hands of the entity that develops the application. The next step came when the focus turned
to the provision of a functionality instead of just a piece of software, and this functionality begun
to be provided “as a service”. In this situation, independent providers offer a set of function-
alities in the form of services that can be accessed and used in a standard way, facilitating the
aggregation of such services to create new service compositions with added value, better suited
to their current needs. Such applications are referred to as service-based applications.

The service-based approach to software development has, undoubtedly, many advantages.
Code reutilisation, outsourcing, and modularity provide a more rapid development process. The
possibility of having third parties providing functionalities that can be accessed in a standard
way has given rise to an ever-growing number of loosely-coupled geographically dispersed ser-
vices available on the Internet, that has naturally taken the role of being the delivery means
for such services. Composition standards have been developed to facilitate the creation of aggre-
gated services giving rise to a rapidly evolving service ecosystem.

Such dynamism has also been a response to evolving requirements in software development.
In fact, the software development process used to consider a “closed-world” assumption in which
the external world changes so slowly that software can remain stable for a long period before any
major update needs to applied. However, each time more and more situations arise where this
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2 Chapter 1. Introduction

assumption is not anymore valid and software applications must face an “open-world” in which
the environment changes continuously and applications need to adapt and react to changes in
a dynamic way, even if those changes are unanticipated [BDNG06].

However such dynamicity, loosely-coupling and heterogeneity of providers has introduced not
trivial challenges in the management of service-based applications. As the maintenance of the
software does not depend completely on the provider of a service composition, due to the fact
that some pieces of them may be under the control of third parties, some characteristics that
are usually manageable in controlled environments, like availability, response time, security,
and others related to the quality of the delivered service, are not always ensured. Even if the
provider is able to manage all the services in a composition, environmental factors like network
latency, congestion, and hardware failures may affect the service in unforeseen ways. Traditional
optimization cycles where the application is stopped, analyzed, modified and restarted does not
fit well in a situation where not all the services are under the control of a single entity, and
where there is a need to timely react to requirements and environmental changes, automating
the analysis and decision taking phases as much as possible, and with a minimal perturbation
in the availability of these services.

At the same time, service-based applications are defined in accordance with some goals re-
lated to the quality of the service provide (QoS goals), and they are expected to comply to these
goals at runtime. It is thus, a necessary requirement that confronted to such dynamically evolv-
ing environments, service-based applications need also to dynamically evolve and adapt by hav-
ing an appropriate managing mechanism. But not only that. Given that the requirements and
conditions over the application may also evolve in unpredictable ways, the management mecha-
nism may also need to dynamically evolve.

As an example, consider applications that aggregate content available from other sites like
Google News or Drudge Report for news, Metacritic for movie reviews, or metasearch engines
like Metacrawler. In all these cases the content is not provided by the site itself, but obtained
from other providers and filtered according to user preferences. Consider also travel applications
like TripAdvisor or Expedia which aggregates different services like hotel reservation, client re-
views, geographic locations, car renting and recommendations into a single site where the user
can make all the needed planning. Again, those sites also do not offer the final product them-
selves, but they provide a uniform and easier way to use different pre-existing services. How-
ever, if some of the services that these compositions use experience problems, these problems
may propagate to the composed service if they are not appropriately handled by a manager.

As mentioned, evolution can be triggered by different sources. Services that become rapidly
popular require better infrastructures to support their service, and several of them ultimately
decide to migrate to highly available and elastic infrastructures (like cloud environments) that
provide different levels of support to host their applications. However, the fact of depending
on third-party provided services, whether it be for hosting the content offered by the composi-
tion, or for the infrastructure support requires appropriate management in case of unexpected
situations, like a slow response from the content providers, or unavailabilities in the case of
infrastructure providers. Any failure in some part of these “composed” services may reflect in
failure in the final provided service.

1.2 Problem description

As expressed in the brief motivation presented above, service-based applications face a situation
where “everything can change”, and they need to be able to timely adapt to such situations with
minimal perturbation to the functionality they provide.

There are several issues that can be pointed out when analyzing this situation:

• Lack of uniformity and flexibility in different services. Each service that is used as a
composing part of another service, and that is developed and provided by a different party,



Section 1.3. Goals 3

may provide a different management interface even if the functionality is equivalent, and
the conditions under which it can be used (cost, number of requests, availability, response
times), may also be different. When devising an action that involves the manipulation of
different services, it is not trivial to consider all the set of different interfaces that can
be available. Also the management features for each externally provided service may be
different, limiting the overall flexibility.

• Impossibility of foreseeing all the possible changes and conditions that can influ-
ence the functioning of a service-based application. When considering services composed
by other services provided from different sources, the range of unexpected failure possibil-
ities becomes wider. However, from the point of view of the user of the final composition,
any failure is a responsibility of the composition and not necessarily of the individual ser-
vices, which are hidden by the composition. Service compositions, thus, need to be prepared
to adapt to different situations that may arise, often, in unexpected ways, in some of the
services they use.

• Complexity of developing effective autonomic tasks. An autonomic tasks is a task
that can be decided and executed by the application automatically under certain condi-
tions. This kind of tasks seems very convenient for programming adaptations to changing
conditions into an application, eliminating the need of having human managers involved in
certain tasks. However, when coordinating actions among multiple services with different
interfaces and different managing capabilities, this task is even less trivial. Plus, to effec-
tively attain a global goal in a composition, an autonomic task may need to be subdivided
through the different services involved, and this subdivision is not easy.

Several solutions have been proposed for tackling the complexity and heterogeneity of ser-
vice compositions. The component-based model for software engineering (CBSE), applied to the
service-orientation area has provided a generic and structured model for designing service-based
applications, called SCA (Service Component Architecture); however this model is focused at the
design of a service-based application and does not consider runtime modifications. On another
side, the autonomic computing initiative is an ambitious discipline that promotes the idea of
having systems that can manage themselves given certain high-level objective to achieve, how-
ever the effective coordination required to provide a global autonomic behaviour to a composition
of seemingly independent services is still a major issue.

One of the main ideas taken from the autonomic computing area is the construction of closed
autonomic control loops that include several phases in which a situation is observed, then an-
alyzed, and a decision taken to react to this situation. This idea has been successfully applied
to specific applications to be able to react to uncertain situations, however their implementation
under uncertain management requirements is not so direct in dynamically evolving environ-
ments as service-based applications.

Given this wide panorama of solutions, it is quite clear to see that autonomicity is a helpful
discipline for making services more adaptable to evolving conditions. Nevertheless, a proper pro-
visioning of autonomic behaviour should take into account that a composition may vary during
its lifecycle, and also the requirements made over the autonomic behaviour must be handled.

We believe that an appropriate use of a component-based approach in a structured service-
based application can facilitate the adaptation of a service to changing environmental conditions;
and, by applying these adaptation features to several individual services, it is possible to reach
a better adaptation capability for a service composition, and provide autonomic behaviour to
services.

1.3 Goals

In this thesis we promote the idea that an appropriate means for monitoring and managing
service-based applications must be attached as close as possible to the services they intend to
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manage, and it must be flexible enough to modify its own behaviour in order to adapt to different
management requirements.

This model of flexible management features that can be inserted and removed from different
services in a composition, would allow to better adapt to changing conditions, and can facilitate
the integration of autonomic tasks.

That said, we specify the goal of our research as to improve the adaptability of service-
based applications by providing a common and efficient means to monitor and man-
age services, while being low-intrusive and flexible enough to adapt to changing man-
agement requirement, ultimately facilitating the provisioning of autonomic tasks to
services.

1.4 Solution Overview

Our solution consists in a flexible monitoring and management framework that can be attached
to individual services in a component oriented service-based application, and consider different
levels of management, from the overall composition of the application, to the computational
resources where these services run.

For being able to provide such a system, we propose a framework that presents the following
features:

• Component-based approach, to enforce separation of concerns, by modeling different ele-
ments of the management system as components that can be plugged-in or plugged-out of
the framework.

• Allow different protocols to monitor and manage services, leveraging them to a common
ground, where decisions can be taken more easily.

• Take into account the infrastructure where the service runs, providing management capa-
bilities that can include several levels of the composition, from higher level goals, to lower
level resource management.

The solution takes the form of an autonomic control loop where its different phases are imple-
mented as components and these components are attached to the services where some monitor-
ing or management feature is needed. This intended flexibility implies that not all the services
of a composition need to include a completed closed autonomic control loop, but rather they in-
clude only parts of it. We believe that this flexibility facilitates the construction of autonomic
tasks better adapted to the service needs.

1.5 Thesis Structure

Along the presentation of this thesis, we separate the description of our solution from the sup-
port implementation that we provide to demonstrate the feasibility of our approach. We have
structured the contents in the following way:

• Chapter 2 gives the context in which our work develops, describing the common terminol-
ogy and the different areas that are related to our contribution.

• Chapter 3 presents the state of the art showing different existing works and tools that
have been proposed to tackle some of the challenges that we aim to address. We present
a comparison between the different features that they provide and classify them according
to how their work compares or inspires our proposition.

• Chapter 4 presents our contribution and positions it with respect to the current state of
the art. We describe the kind of problems that we aim to solve and how our solution helps
in addressing those issues.
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• Chapter 5 details the design of the framework that we propose and the consideration
that we have taken into account in each phase of the autonomic control loop, the interfaces
we have defined and how they can be used.

• Chapter 6 presents a technological background about GCM/ProActive, which is the
middleware tool that we use to provide a concrete implementation of our framework, and
also describes the technical contributions that we have made to this middleware in order
to support our solution.

• Chapter 7 details the implementation that we have provided over the GCM/ProActive
middleware, detailing each element of the implemented framework.

• Chapter 8 presents some experimental evaluations that we have conducted over our im-
plementation, and describes an example use case about a component service-based appli-
cation that is gradually improved with monitoring and management features by using our
solution.

• Finally, Chapter 9 shows the final conclusions about our work and describes some per-
spectives for future research and improvement.



6 Chapter 1. Introduction



2
Context: Services and Components

Contents
2.1 Service-orientation and SOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Service-Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Service Oriented Architecture (SOA) . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Implementing SOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Challenges in service orientation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Grid and Cloud Computing Resources . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Grid computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Component-based Software Engineering . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Service Component Architecture: SOA+CBSE=SCA . . . . . . . . . . . . . . . 18
2.5 Autonomic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Autonomic Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Self-Adaptability and Self-* Properties . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Autonomicity and Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

This chapter provides the background and concepts required for a proper comprehension of
the topics addressed during this thesis. Along with describing the concepts involved in this work,
this chapter also intends to present the research challenges that have a relationship with the
research questions that motivate this thesis.

The general area in which this thesis develops touches several fields. Our contribution
looks to improve the implementation of service-based applications, so we introduce the service-
orientation area to highlight the importance of service-oriented approaches in the current ap-
plication development trends. At the same time we target a particular kind of service-oriented
applications, those that have been built following a structured component-oriented model, which
provides several advantages in terms of abstraction, structure and flexibility. As service imple-
mentations needs a reliable supporting infrastructure, current trends point in the direction of
highly available infrastructure like grids and clouds as an appropriate solution; in our work we
aim to consider the impact of that supporting infrastructure in the adaptation decisions that can
be taken over the application. A major research area that looks how to improve the adaptation
not only in service-orientation but in a broader range of applications is the autonomic computing
area, whose principles we adopt in our proposition.

The chapter is organized as follows. Section 2.1 describes the paradigm of service-orientation
and its relationship with the widely used Service Oriented Architecture concept, describing a
model that will be used to position our contribution. Section 2.2 reviews the concept of Grid and
Cloud computing, relating them to common appropriate infrastructures to support service-based
applications. Section 2.3 reviews the paradigm of Component-based Software Engineering as a

7
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means to support the construction of modular software that share several features with service-
based applications. Section 2.4 describes the Service Component Architecture specification that
promotes a component-based approach to develop and support Service Oriented Architectures.
Section 2.5 mentions some of the challenges of the Autonomic Computing area and describes
how they can support the construction of autonomic and adaptable service-based applications
Finally, section 2.6 summarizes the main research challenges that will to be addressed during
this thesis.

2.1 Service-orientation and SOA

After several years of advances and refinements in programming paradigms for easing the pro-
gramming of complex software applications, the concept of service-orientation may seem like just
another way of describing a much older concept.

A proper description about service-orientation requires a definition of the concept of service.
The concept of service is common in every day world. Indeed, each person who carries out

a task providing a benefit to others, is performing a service. A taxi driver, a mailman, a sales-
person, a cooker, a medic, a janitor, an accountant, all provide well defined concrete services,
which may be called transportation, mail delivery, selling, cooking, medical attention, cleaning,
accounting. Moreover, all these separate and well defined services may take part in a larger
chain. For example, a person who is arranging a wedding may use a delivery service for sending
invitations, a civil officer, a photography service, a catering service, a location renting service,
and using each of those individual services, it composes a bigger and more complex wedding
service. It is worth noting, that the composed wedding service is also a service that conceptually
is not different from the individual services from which it is composed. Each of the services
provides a specific functionality, which is accessed by the specific predefined means, while the
way to carry them out is an internal concern that is not expressed in the description of the ser-
vices. Also, each of the services that compose the bigger service continue existing by themselves,
independently if they form part of another service or not.

A software service is not much different. One of the initials, and still common definitions for
services was given by Mike Papazoglou:

“Services are self-describing, platform-agnostic computational elements that support
rapid, low-cost composition of distributed applications.” [Pap03]

From this definition, one of the important notions is that of self-description. In fact, it is
expected that a service provides all the information required to use it. The mention of rapid
and low-cost composition implies also a notion of loosely coupling and the fact that a service can
be used as part of a bigger distributed application. Finally the requirement of being platform-
agnostic implies that a service must not be tied to any specific technology.

A complementary vision can be found in the definition given by the OASIS 1 Consortium:

“A service is a mechanism to enable access to one or more capabilities, where the
access is provided using a prescribed interface and is exercised consistent with con-
straints and policies as specified by the service description” [OAS06]

This definition gives importance to how to access the capabilities, while describing nothing
about the capabilities themselves. This is because in a service the logic is encapsulated and
abstracted from the rest, as it is not a main concern. In practice, services form units of solution
logic that provide a set of related capabilities that can be publicly invoked to achieve a well
defined goal, usually expressed in a service contract [Erl].

Following these definitions, and the practical use of services, some important elements can
be identified:

1Organization for the Advancement of Structured Information Standards
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• Service provider, as an entity that offers a service and makes it available, including its
description, and providing the related technical and business support.

• Service consumer, as an entity that uses a service by accessing to the capabilities that it
offers. A service consumer can be another service, or external application, customer, user,
or any entity capable to use the capabilities of the service according to certain rules.

• Service description, or service contract, is the element that contains, in a precise way,
all the information required to access the capabilities offered by the service.

2.1.1 Service-Orientation

The concept of software service (in the following, called simply service) gives support for the
paradigm known as service-orientation. In contrast, for example, to object-orientation, where
the main entities are groups of methods with certain characteristics (and usually modelled from
real world elements), or to component-orientation, where individual, modular pieces of software
are composed through interfaces, service-orientation treats services as first class elements.

It must be noted, however, that service-orientation is not a completely different paradigm
for building applications. Instead, service-orientation shares several design guides and concepts
with other paradigms.

Applications built using the service-orientation paradigm, known as service-based applica-
tions (or service-oriented applications) use services as basic units of composition to create solu-
tions. When designing a service-based application, the priority is the definition of separated
functionalities that perform a specific task, and that are made available in a way that can be
used and take part in other solutions.

The vision of service-orientation is that applications will be created by easily assembling
small well-defined tasks, publicly available as services. [PTDL07]. This vision has an implicit
requirement for service interoperability, which is reflected in the way that services communicate
and publish their capabilities, and how they interact with other services. If services are devel-
oped in an interoperable way, then different providers can develop and offer their services in an
independent way, helping to realize the vision of service-orientation.

Service-Orientation is guided by design considerations, referred by Thomas Erl [Erl] as the
following service-orientation principles:

• Standardized Service Contracts. Regardless of the specific format used for describing
the service capabilities (i.e. the service contract), it is important that this format be known
and used by all the parties that access the service.

• Service Loose Coupling. The level of dependencies between services must be as low as
possible. In fact, consumers should depend only on the capabilities expressed in the service
contract, and not on the implementation of the capability itself. This allows independent
evolution of services while still ensuring a base of interoperability.

• Service Abstraction. The service must hide as much of the underlying details of the
internal logic as possible. By relying only in the information published in service contracts,
and hiding the rest, the service avoids unnecessary dependencies and preserves loosely
coupled relationships.

• Service Reusability. The capabilities of a service must be provided for a technologically-
agnostic context. This ensures that the service can be reused in other contexts that were
not initially considered.

• Service Autonomy. The autonomy of a service is increased as they have more control
over their underlying runtime implementation. The ability of service to run autonomously
2, the more predictable its runtime behaviour will be. This is particularly important when

2The term “autonomous” must not be confused with “autonomic”. In fact “autonomicity” is an important concept later
in this thesis.
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designing a service that is composed of other services, as the composed service is less au-
tonomous.

• Service Statelessness. Although services are not forbidden to be stateful, it is recom-
mended that services delegate the management of state information to specialized entities,
and focus in functionality, in order to minimize shared resource consumption and increase
scalability.

• Service Discoverability. Services must provide metadata that allows them to be effec-
tively discovered and interpreted. An appropriate metadata description about a service
increases the opportunities for reuse and composition. Note that this principle does not
assume the existence of a service registry.

• Service Composability. Services should be designed in a way that they solve specific
concerns, so to improve their ability to be part of a service composition. This is the service-
oriented way to provide separation of concerns.

One of the objectives of these principles is to promote the existence of an interoperable set of
services. In fact, interoperability can be identified in each of these principles.

2.1.2 Service Oriented Architecture (SOA)

A service-based application can be built in a number of ways. Service Oriented Architecture
(SOA) emerged as an architectural model for realizing service-based applications. As defined by
Papazoglou:

“SOA is a logical way of designing a software system to provide services to either end-
user applications or other services distributed in a network through published and
discoverable interfaces.”[Pap03]

SOA comes to bring a common way to organize a service-based solution promoting reuse
growth and interoperability. As mentioned in the OASIS Consortium reference model for SOA:
An SOA “is not itself a solution to domain problems, but rather an organizing and delivery
paradigm that enables one to get more value from use both of capabilities which are locally
’owned’ and those under the control of others. It also enables one to express solutions in a way
that makes it easier to modify or evolve the identified solution or to try alternate solutions”
[OAS06].

This last description mentions some important concepts:

1. an SOA is not a solution itself, but a way to organize and build (service-based) solutions;

2. there is a need for interoperability, as there can exist different and heterogeneous service
providers; and

3. solutions should be able to evolve and be easily modifiable.

As for the participants, their interactions can be defined using the basic model for an SOA,
shown in Figure 2.1.

In the basic relationship, (1) the entity that wants to offer a capability, the service provider,
publishes a service description in an intermediate entity called service registry. The service
registry stores a set of service descriptions and makes possible to perform queries over them.
As second step, (2) an entity that wants to use a service, the service consumer, queries the
service registry and discovers the available services based on their service descriptions. With
that information, (3) the service consumers can find the owner of the service, the service provider,
and bind to the provided service and initiate a (4) request/response communication. As seen, the
service registry acts a service broker that allows service consumers and providers to find each
other. In the following we will use the terms consumer and provider to refer respectively to
service consumers and service providers.
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Figure 2.1: A basic Service Oriented Architecture

This basic model defines a technologically-agnostic construction where the elements of the
service provisioning can be organized and interact. The model allows to show the basic interac-
tions between consumers and providers. In practice, the service consumer/provider relationship
can be more complex. When a consumer finds a provider, they must agree to initiate the rela-
tionship and this is usually established in a service contract after a negotiation process. Once the
conditions are agreed, their compliance needs to be monitored during the service provisioning.
When creating service compositions, it is necessary to coordinate the different services in or-
der to provide an effective composed service. Papazoglou et al. [PTDL07] proposed a commonly
referred model that takes into account several functionalities required by an SOA and separate
them in three layers, as shown in Figure 2.2.
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Figure 2.2: Extended Service Oriented Architecture functionalities [PTDL07]

In this model, the functionalities required by each layer are based on those provided by the
lower layer. The lower layers cover the basic services relationship, the middle layer groups
issues involved when composing services, and the highest layer tackles management of services.
A brief description of these layer and functionalities follow: [PH07]:

Service Foundations Involves the middleware that serves as a platform for the service-oriented
application. The middleware should allow to connect possibly heterogeneous providers and let
the application developers to define the service functionality in terms of description, publishing,
finding and binding of services. Service providers and consumers follow the roles described in
Figure 2.1, and can include actors called service aggregators. A service aggregator groups
services published by other providers and offers them as new value-added services, acting also
as providers.

Service Composition Involves the tasks performed by service aggregators to take multiple
services and form a new added value composite service. A composite service can be seen as any
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other simple service and, as such, can take part in the creation of another composite, or form an
end solution by itself.

In this context, terms like orchestration and choreography are used to describe a means to
coordinate the interactions involved in the composition of services. Functionalities like transac-
tions, and conformance are needed to ensure effective compositions.

Service Management This layer requires to realize monitoring and management activities
over the services. This includes the collection of information about the SOA-based application
during its lifecycle, and to be able to control the service in order to comply to certain conditions.

Management activities include monitoring the appropriate metrics to ensure that the service
behaves according to certain conditions, provide information about the performance and other
characteristics of the service, control the lifecycle or state of the service, and being able to modify
the composition of the service in order to adapt to some specified conditions.

A very important element in Figure 2.2 is that “QoS and non-functional characteristics” are
transversal to all layers of the model.

Quality-of-Service (QoS) is a term that was originally defined in the telecommunications
area to describe “A set of quality requirements on the collective behavior of one or more objects”,
and that has been applied to the services terminology to indicate a set of properties that allow
to characterize the non-functional aspects of service, i.e., aspects that are not related to how
the functionality of the service is implemented, but with how this functionality is delivered to
the consumer. These properties are referred to as QoS characteristics or Qos attributes and are
measured by obtaining Qos metrics.

QoS characteristics can be measured through all the layers of the model. In the Service
Foundations layer, QoS characteristics of individual services can include the response time of a
request, the availability of a service, the cost of a service, the security model required to use the
service, or others. The management of QoS characteristics at this layer may involve modifying
some parameter of the platform where the service executes, change the resources available for
the service, or tune some parameter of the service implementation, among others.

At the composition layer, QoS characteristics may involve several services and their com-
putation involves aggregating the individual QoS characteristics of the composing services in a
meaningful way.

At the management layer, QoS are important to decide global actions upon a composed ser-
vice, for example, to decide to deploy/start/stop a service, or modify some parts of a composition.
This level is related to the compliance with global goals about the composition.

In the end, a proper QoS management should be able to integrate the QoS concerns expressed
through each layer and expose them in a meaningful way.

When establishing a consumer/provider relationship, goals about QoS are usually stated as
conditions in a Service Level Agreement (SLA). An SLA is a contract between the consumer
and the provider that may include, among other items, goals about the QoS of the service during
the consumer/provider relationship, known as Service Level Objectives (SLO). In turn, SLOs
are usually stated as conditions that must be verified during the provision of the service.

2.1.3 Implementing SOAs

Being an architectural model, SOA is not tied to any specific implementation technology. How-
ever, common approaches and tools have been developed that support the development of SOA-
based solutions.

A commonly used technology for implementing SOAs is the Web Services architecture [W3Cb].
The Web Service stack provides protocols and standards that cover several aspects and that can
be used to implement SOAs, and several providers rely on these technologies to support their
SOA, although it is not the only way to implement SOAs.
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Regarding the basic Service Foundations layer, services can be specified and described using
the Web Services Description Language (WSDL) [W3Cc]; registry and discovery are supported
by the Universal Description Discovery and Integration (UDDI) specification [OASa]; and the in-
teraction between services uses the SOAP [W3Ca] communication protocol. Support to describe
Service Compositions is commonly addressed by workflow languages like WS-BPEL [OASb].
Management and monitoring activities can be supported by numerous languages, depending
on the kind of activities targeted, like WS-Policy [W3Cd], WS-Management [(DM], or WSDM
[OASc].

However, as more heterogeneous technologies are available to address different SOAs, the
need for an open and extensible solution has given raise to the concept of Enterprise Service
Bus (ESB) [Cha04]. The ESB is an open standards-based message backbone that can support
the implementation, deployment and management of SOA-based solutions. An ESB works as a
message broker that can interact with different technologies by implementing the appropriate
interfaces, and enables connectivity between services that use different formats. An abstract
vision of an ESB is shown in Figure 2.3.

ESB

WS-
SOAP REST

BPEL

JMS .NET

JMSWS-
SOAP

Figure 2.3: An Enterprise Service Bus (ESB) allows transparent connectivity between heteroge-
neous services.

In practice an ESB allows loosely coupled connectivity of services and, due to its middle-
ware nature, can manage the bindings between services and support non-functional features as
transactions, security, performance metrics, dynamic configuration and discovery.

2.1.4 Challenges in service orientation

Several challenges can be mentioned in the development and evolution of service-based applica-
tions. Instead of listing them exhaustively, we will concentrate on those that are related to the
goals we want to address in this thesis.

• Dynamically (re-)configurable runtime architectures. The architecture of the service-
based application should provide the means to be (re-)configured at runtime and to be op-
timized in accordance with the requirements of the application.

• QoS-aware service compositions. In a context where there may exist multiple providers
for services that provide similar or equivalent functionalities, QoS attributes play an im-
portant role in helping to determine a selection of proper services to ensure some global
QoS condition. This type of composition is called QoS-aware composition, and refers to
taking into account the QoS attributes of a service previous to making it part of the com-
position, as the global QoS attributes of the composed service will probably depend on the
individual QoS of the individual services selected.

• Autonomic services. Provide autonomicity to services can be viewed from several points
of view. As one advantage, it can allow to manage service infrastructures with minimal
human intervention. It also can be used to adapt different parameters of the service in
order to comply with certain QoS-related goals.
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• Autonomic composition of services. Autonomicity can also be provided at the level
of the service composition. By giving autonomic capabilities to service composition, new
services could be created giving some high-level goals and relying on a “service composer”
element to automatically discover, select, bind and compose the new service. At the same
time, the composed service is able to modify its own composition and adapt to changing
conditions.

To properly support these challenges, some lower level support must exist. In particular,
monitoring and management facilities must be available at each level of the service-based appli-
cation in order to obtain the required data to perform QoS-aware compositions, to dynamically
reconfigure services architectures, or to perform autonomic tasks.

SOAs have particular characteristics that make the monitoring and management of QoS a
non-trivial and challenging task as we describe below.

The loosely coupling and multiplicity of providers in SOA make this a dynamic environment,
and in such environment, the consumer/provider relationships may vary during the service exe-
cution. In particular, in SOAs not all the services are usually under the control of a single entity
and there may be multiple sources for unpredictable behaviour during the service provisioning,
ranging from internal characteristics of the service provider, to issues in the channel used to
deliver the service, as usually the Internet is used for this matter.

Such dynamicity makes that the QoS attributes of a service composition be hardly pre-
dictable. Although, an initial composition may comply to some conditions at design time, and
the initial deployment time, it becomes necessary to ensure that these conditions also hold at
runtime, even after some reconfigurations may be applied. That requires continuous runtime
monitoring during the lifecycle of the service.

Management activities for loosely coupled applications include installation, deployment, con-
figuration, metrics collection and tunning to ensure a responsive service execution. The monitor-
ing of information about the managed-service platform allows to diagnose performance problem
via root-cause failure analysis, realize SLA Monitoring, and autonomically decide on actions.

2.2 Grid and Cloud Computing Resources

The growing offer of services has enforced the need for highly available computational resources
where to host these services, as on-premises infrastructure support is each time less convenient
in terms of cost and maintenance. The plain offer of specific-purpose computational power exists
from a long time ago in terms of Grid Computing resources, whose research area has faced,
among others, the goal of having a highly available and interoperable network of computing
power. The service-oriented approach has somehow complemented this vision and enforced a
delivery model of such resources “as a Service” pushing the term of Cloud Computing to make
computational resources available at different levels of abstraction.

The Grid and Cloud computing terms are highly interrelated and share several common is-
sues and objectives [FZRL08]. Their differences in several aspects is also a matter of discussion.
Instead of comparing side-to-side both technologies, we present their main characteristics and
usefulness as supporting infrastructure for service-based applications.

2.2.1 Grid computing

The idea of having a world wide interconnected computational infrastructure available for ex-
ecuting applications is not completely new. Already in 1999, the concept of a Grid computing
infrastructure [FK99] had the vision of unifying multiple providers of computational resources
into a highly distributed universal source of computational power, accessible from any place. In
practice, several Grid initiatives emerged, each with its own characteristics and tools, but few
interoperable features that allow to realize the original vision.
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A refined definition of Grid states that the main objective is “to enable coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual organizations” [FKT01].
The term of Virtual Organizations (VO) came to define a set of individuals and/or institutions
that own computational resources and that can define sharing rules for their resources as if they
were all from the same organization. A commonly accepted checklist about what is, and what is
not a Grid was given by Ian Foster [Fos02], stating that a grid:

1. coordinates resources that are not subject to centralized control.

2. uses standard, open, general-purpose protocols and interfaces.

3. delivers non-trivial qualities of service.

These definitions highlight some features about Grid infrastructures that will be relevant in
the context of this thesis:

• Grids are multi-institutional platforms, which has as a consequence that both the resources
shared and the sharing rules may be heterogeneous.

• Grids are dynamic, which implies that the resources available in a Grid may be available
or not at different times and possibly in a rather unpredictable way.

Several efforts have been brought to standardize and unify the interfaces used for accessing
and exploiting Grid infrastructures, like the Open Grid Services Architecture (OGSA) [FKNT03],
later superseded by the Web Services Resource Framework [OASd]. However, as Grid initiatives
are built for different purposes, most of them remain still different in terms of resources, soft-
ware and tools.

Grid infrastructures have remained a popular means to offer computational resources. Their
goals go in line with the vision of having a widely-available source of computational resources
even if their interoperability is somehow restricted to certain organizations. They remain, nev-
ertheless as a powerful supporting infrastructure for hosting services.

2.2.2 Cloud computing

Many definitions for Cloud Computing have been proposed and little consensus is still achieved.
We choose the following definition that includes important characteristics for the context of this
thesis:

A large-scale distributed computing paradigm that is driven by economies of scale,
in which a pool of abstracted, virtualized, dynamically-scalable, managed computing
power, storage, platforms and services are delivered on demand to external customers
over the Internet [FZRL08].

From this definition it is possible to identify some features of Cloud Computing platforms:

• Clouds provide virtualized resources. Cloud providers usually rely on virtual machines to
share physical resources, thus offering isolated view of their resources to the users. Virtual-
ization also simplifies management activities for end users, like configuration, deployment
and replication.

• Clouds are dynamically scalable. A concept often known as elasticity. As a consequence of
virtualization, resources can be offered to the user in a dynamic way as they need them,
allowing the user to increase their virtualized instances and perform load balance between
them.

• Clouds offer their services in a pay-per-use model, allowing the user to have control and
balance their expenses with respect to the computing power they receive.

Clouds can be classified according to their service delivery model:
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• SaaS (Software as a Service) provides access to software applications as services over the
Internet, eliminating the need to host, install, and run the application on the client com-
puter, simplifying maintenance and support for the user. This kind of applications, also
called Cloud Applications are quite appropriate for supporting services in an SOA context.
Some examples are: Google Apps (Mail, Calendar, Reader, Docs), or Salesforce.com.

• PaaS (Platform as a Service) delivers access to a computing platform or solution stack,
supported by a Cloud infrastructure, where the users can host their own applications. The
user has control over the applications that run on the platform, but not over the platform
itself. Some examples include: Google AppEngine, or Windows Azure.

• IaaS (Infrastructure as a Service) delivers access to the Cloud infrastructure, usually in
the form of a virtualized environment, where users can deploy all the software they re-
quire. Users have access to the virtual machines where their applications run and storage
facilities, giving them the highest degree of control. Nevertheless, the users cannot access
details about the physical infrastructure behind. Common examples are: Amazon EC2,
Eucalyptus, or OpenNebula.

The fast growing of Cloud Computing offerings has reinforced the ideal vision of a global
Cloud (originally Grid) of computing power available from any place. In fact, some authors al-
ready talk of the emergence of a multi-cloud platform composed by a mixture of different Clouds,
and motivated by the need to balance the existence of in-house and external resources to obtain
a better trade-off between cost and performance. This multi-cloud environment will have to cope
with changes in the offered resources and user requirements in an adaptive way. Some commer-
cial solutions like RightScale and FlexiScale, or research initiatives like Eucalyptus work on the
integration of different Cloud providers in order to provide effective multi-Cloud platforms.

Although it is always a contentious topic, it is easy to see that Grid Computing and Cloud
Computing platforms share many things [FZRL08]. In fact, both visions share the goal of reduc-
ing the cost of computing, and increase reliability and flexibility by switching from locally owned
and hosted applications and infrastructure, to an externalized service that can be accessed as it
is needed providing a potentially higher computing power.

Yet, the means to achieve these visions may differ in some aspects. Grid Computing infras-
tructures have been motivated by the need to achieve highly scalable computing resources and
storage to applications with specific purposes (scientific, business, industrial). Cloud Computing,
on the other side, can be seen as a concept that has evolved from the Grid area, to deliver more
abstract resources and services to the users, with a more clear service-oriented view. From this
point of view it is hard to say that Cloud Computing is just another name for Grid Computing,
nevertheless they share several common challenges.

The adoption of Cloud computing is growing, and evidence says that it will continue to be
so. Cloud environments provide a strong base for developing externally hosted applications,
available “as a Service”. The vision of Cloud Computing of having a large pool of computing
power, storage, platforms and services available seems like an appealing support for developing
service-oriented applications, and many authors talk already about a Service Cloud [CGM10]
as federation of sites and services from various infrastructure providers. The virtualization and
dynamic scalability features have an important role in supporting service that can adapt their
resource utilization.

2.3 Component-based Software Engineering

Component-Based Software Engineering (CBSE) is a paradigm for software development that
attempts to solve the problem of separation of concerns by implementing concerns as software
components. Software components can be defined as follows [Szy02]:

A software component is a unit of composition with contractually specified interfaces
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and explicit context dependencies only. A software component can be deployed inde-
pendently and is subject to composition by third parties.

Software components (in the following, referred to simply as ’components’) present some im-
portant features for software development:

• Encapsulation. Components encapsulate their internal logic, allowing them to be treated
as black-boxes, accessible only through their defined interfaces.

• Composition. Components are composable. Components can be assembled in order to
work together, and the composition can be performed by a third party.

• Description. All that is needed to know about a component is given by its description.
The advantage of a precise description is that it allows to develop tools for composition and
formally reason about the components.

Components are expected to be reusable. This means that a component that has been used
for a composition can take part also in other compositions. The fact that a component can be
known from its interfaces gives ground for defining the composition of component-based ap-
plication through an Architecture Description Language (ADL); this is a language that defines
a component-based application from the components involved in a composition and their con-
nections through interfaces. This means of creating an application by assembling preexisting
components by connecting their interfaces in an appropriate way is known also as component-
oriented programming.

Several component models have been proposed. A component model defines the kinds of
interactions that are allowed between components and general rules for performing compo-
sition. Implementations of component models support the execution of components that con-
form to that model. Industrial component models include Microsoft .NET[net], Sun Enterprise
Java Beans (EJB)[ejb], the Common Component Architecture (CCA)[cca], and the Corba Com-
ponent Model (CCM) [ccm], while research initiatives include SOFA[sof], Fractal[BCL+06] and
GCM[BCD+09]. In particular GCM shows very interesting properties like hierarchical com-
position, reconfiguration capabilities, both also present in Fractal, and distributed deployment
which are useful in our work. A proper background about Fractal is given in Section 6.1, while
GCM is described in Section 6.2.

The component-oriented paradigm is usually compared with object-orientation. In fact both
approaches share several common goals as modularity, encapsulation and reuse. Their use how-
ever can be distinguished. Component-oriented architecture focus on the separation of concerns
and enforces stronger encapsulation when developing and application; this allows a higher level
of abstraction than what is usually achieved with objects which are usually more fine-grained.

A simple example of a component-based solution for designing a Vacation Planner applica-
tion can be seen in Figure 2.4 using a common UML notation. The interfaces are indicated on
the side of the components and use different shapes to indicate if the component “depends” on
a connection to another component, or if it “offers” connectivity to another component. In prac-
tice, component models define custom names an notation for each case. For example, the “Hotel
Reservation” component offers an interface called IHotel to allow access to its functionality, and
it depends on two additional components “Room Management” and “Credit Card Billing” to ac-
complish its task, however the only way the “Hotel Reservation” component can interact with
those components is through the IRoom and ICCBill interfaces. In fact, no implementation logic
is mentioned in this example and, from the point of view of the composition, any component
that offers a ICCBill interface could replace the “Credit Card Billing” component. This example
illustrates an application composed of several components that could have been independently
developed, where all the information they expose is about the interfaces they offer, and the in-
terfaces they depend on.

In some aspects, components can be seen as a natural implementation for services, as they
naturally address some of the principles mentioned in Section 2.1.1. In fact, the interfaces ex-
posed by components can provide a ground for Service Contracts and support discoverability; the
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Figure 2.4: A component-based vacation planner application, showing multiple components con-
nected through their interfaces.

capability of components to be composable is derived from the “separation of concerns” approach
of both service and component-orientation; and the encapsulation characteristic of components
promotes loosely coupled design, abstraction and reusability.

However, a proper component-based solution must provide additional functionalities in order
to provide a complete SOA solution. For example, management capabilities are not uniform
through the different component models; SOA environments are dynamic, meaning that the
architectural composition of an SOA-based solution may evolve over time and this requires some
level of runtime adaptation in the composition; the challenges of autonomic services in SOA
requires that additional logic be inserted in a component without violating their encapsulation.
Finally, concerns like monitoring and management identified through all the levels in an SOA
implementation need to be addressed.

During this thesis we take profit of a component-based approach to support several concerns
in a service-oriented application. In particular we base our proposition in a component model
that provides a reconfigurable component architecture to deliver flexible monitoring and man-
agement features, supporting autonomic features in a component-based service.

2.4 Service Component Architecture: SOA+CBSE=SCA

The convergence of service-orientation needs and component-based approaches can be traced to
the Gravity project [CH04], in which a component model is proposed to provide dynamic avail-
ability, and allowing autonomous reactions on services. The combination of component-based
approaches to service-orientation is based in some principles highlighting the fact that services
are characterized by a contract, and components implement a contract; services provided specific
functionalities that can be reused, which is also the cases for components, that can be completely
replaced by another that follows the same contract. This convergence between the requirements
for SOA and the features provided by component-based solutions gave rise to the initiative called
Service Component Architecture (SCA) [OSO07b, Cha07, MR09].

SCA is a set of specifications which describe a model for building applications and systems
using a Service-Oriented Architecture. SCA follows the service-orientation idea that a business
function is provided as a set of services, which are assembled together to create a service-based
solution. Applications built as a set of services, called composite applications, can include both
new services created specifically for the application, and also business functions from existing
applications that are reused as part of the composition. SCA provides a model both for the
composition of services and for the creation of service components, including the reuse of existing
services.

SCA applies the ideas of Component-based Software Engineering to the design of SOAs,
where, not surprisingly, components called SCA Components are the basic units of construction,
and take advantage of encapsulation, composition and description. SCA defines those elements
in a technologically-agnostic way, that allows to separate the implementation of individual ser-
vices and communication protocols from the architectural description of the application, enforc-
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ing the construction of service-based applications that can rely on heterogeneous technologies.
An SCA Component encapsulates the implementation of a service and makes it available

through clearly specified interfaces called SCA Services. An SCA Service is, thus, the access
point to the functionality provided by the SCA Component. At the same time an SCA Component
expresses the dependencies on other services as SCA References. An SCA Reference acts as a
service that an SCA Component may call. Both SCA Services and SCA References are defined
in terms of groups of operations inside an Interface. SCA Components provide a mechanism to
configure an implementation externally, through SCA Properties.

The implementation of an SCA Component can be done using any technology that allows to
relate the service offered by the SCA Component to a concrete implementation. Some implemen-
tation technologies used by SCA Components are traditional programming languages like Java
and C++, workflow languages like BPEL, or scripting languages like PHP and JavaScript.

Composition is realized by connecting SCA Components through their interfaces. SCA Ser-
vices and SCA References are connected by SCA Wires. The mechanism by which clients can call
and use services may be specified using SCA Bindings. Targets of SCA Bindings, called binding
types, can be, for example, services exposed by Web Services or JMS, other SCA Services. SCA
provides an extensibility mechanism where additional binding types can be defined.

Composition can also be realized in a hierarchical way. SCA defines a hierarchical model
that includes SCA Composites. SCA Composites allow to assemble SCA elements in logical
groupings containing a set of SCA Components, SCA Services, SCA References, and SCA Wires
that interconnect them. SCA Composites can be treated as regular SCA Components, meaning
that they can be wired to other SCA Components which can also be composites, and they can be
included in other SCA Composites. The SCA Services and SCA References used by a composite
are exposed by promoting the interfaces of their internal SCA Components.

A summary picture illustrating the definitions presented using the standard notation for
SCA is shown in Figure 2.5

Component
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Service Reference

Properties

Wire
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Binding: SCA, WS, JMS, ... Binding: SCA, WS, JMS, ...

Component
D

Implementation: Java, 
BPEL, SCA Composite, 

PHP, ...

Figure 2.5: An SCA Composite including two SCA Components

The assembly of an SCA application can be described using an XML-based ADL file, some-
times referred to as Service Component Definition Language (SCDL).

Different SCA Runtime implementations have been developed. An SCA Runtime provides
the support to create, deploy and execute application based on the SCA specifications. Some
SCA runtime environments include IBM WebSphere Application Server [IBM], Fabric3 [fab],
Apache Tuscany [tus], Paremus Service Fabric [par], and FraSCAti [SMF+09].

The SCA specifications allow the association of non-functional properties to SCA component
using the notion of SCA Policy [OSO07a]. An SCA Policy is a statement that controls or con-
strains some non-functional property on the SCA applications and that must be enforced by the
SCA Runtime. This capability has been added mainly to include properties related to authen-
tication, confidentiality, integrity, message reliability and transaction. However, SOAs usually
require additional non-functional properties like monitoring, reconfiguration and adaptability
that may require more complex descriptions than those that are possible by relying solely on
SCA Policies.
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The structured assembly model of SCA allows to develop a service-based application follow-
ing a component-oriented approach, easing reuse of services, with independence of their imple-
mentation technology or communication protocol. This separation makes the application more
adaptable to heterogeneous service providers. At the same time, the specific interfaces, imple-
mentation and protocols are established in the SCDL composition description file. A modification
in the architecture of the service-based application, or in the communication technology can be
realized by modifying the SCDL file in an independent way from the service implementation.

The major drawback in SCA is the lack of support for dynamic evolution. The SCDL file is
a static design-time construct, and cannot be modified during the execution of the application.
Consequently any modification in the composition of the service-based application requires to
stop the complete application, and restart it using the new composition. Dynamic reconfigura-
tion and other non-functional aspects are not addressed by the SCA specifications, so it is up to
the SCA Runtime implementations to provide such features if it is required.

In this thesis we promote the idea of a component-based design for providing monitoring and
management features to a component-based service-oriented application. In order to provide a
generic approach, we rely on the SCA specification to describe the architecture of our frame-
work, however our approach also involves the runtime modification of the composition, and so it
requires the support of an SCA platform that provides such dynamicity.

One example of such reconfigurable SCA platform is the FraSCAti platform, described in
Section 3.1.4.2, which bases on the Fractal specification to add reconfiguration capabilities to an
SCA-based application. In our work, however we rely on an alternative implementation of the
SCA specification, based in the GCM model (Section 6.2) which enforces a more clean separation
of concerns by leveraging a component-oriented approach, and which can also handle distributed
deployment concerns.

2.5 Autonomic Computing

The Autonomic Computing initiative was pushed by IBM as a response to the ever more increas-
ing complexity in the maintenance of computing systems [Hor01]. The motivation grounded in
the difficulty of managing systems that span heterogeneous environments and extend beyond
the boundaries of single companies. The abilities required for installing, configuring, optimizing
such systems become too complex for system integrators and managers, and it becomes even
more difficult to deliver decisive responses in a timely way. Let alone that all these activities
are commonly not even part of the main functional objective of the system, but they are anyway
crucial for obtaining an adequate respone.

The vision of autonomic computing based on the idea of self-governing systems. This is,
systems that can manage themselves given high-level objectives from an administrator [KC03].
The inspiration is that of the autonomic nervous system of humans beings, which governs issues
like heart rate, body temperature and respiration, freeing the brain from dealing with those
low-level, yet vital, activities, and concentrate in other tasks. The situation is similar to complex
computing systems. Management tasks like installation, configuration, protection, optimization,
are not the main functional objective of most applications, but if they are not properly addressed,
the application cannot accomplish its task.

The proposition, then, is to enable self-governing systems that take control of all these non-
functional tasks, letting more space for the application and consequently for the developers, to
concentrate on the main functional goals. However, the issue of providing self-governance to ap-
plications is not an easy task. In order to really free developers from the burden of programming
self-governing features on their applications, there must exist a way to develop these concerns
independently and to integrate them with the application at some stage.
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2.5.1 Autonomic Control Loop

The characteristics of self-governing or, more commonly named, self-managing systems usually
include [Hor01]:

• The system must be able to know itself and its surroundings. This means that the system
must be aware and must be able to collect information about its own functioning and about
the environment.

• The system must be able to modify itself. This implies that the system must be able to
produce an effect in its own configuration.

• The system must be able to react to varying and unpredictable conditions. This means that
the system must be able to analyze the information it has and decide upon some course of
action in a timely way.

These activities are not static. They must continually repeat themselves and be re-evaluated
during all the functional activity of the system. The implementation of this behaviour takes
the form of feedback control loops, in which typically four canonical activities can be identified
[MKS09]: collect, analyse, decide, and act, which are organized as shown in Figure 2.6
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Figure 2.6: Main activities of the feedback control loop [DDF+06]

In the feedback control loop, a set of sensors or probes, collect data from the executing pro-
cess and its context. The collected data is processed or filtered and possibly stored in order to
reuse it later. A diagnosis engine analyses the collected data to infer trends or identify rele-
vant symptoms. Next, a planning engine attempts to predict the future behaviour of the system
and decides on how to act on the executing process and its context through effectors. The new
configuration of the system produces new data that is collected, closing the feedback control loop.

The generic model for the feedback control loop involves several questions that must be solved
when implementing such a system [MKS09]:

• Collect. Determine what kinds of data must be collected, and which are the sources of
such data. In which format will the collected data will be represented, and at which rate it
will be collected. The sources of data may be a fixed set, or they may vary at runtime.

• Analyse. Determine which algorithm or diagnosis technique will be used. How the state of
the system is represented from the collected data, and how it relates to the objective state.
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• Decide. Determine how far is the current state of the system from the desired objective
state. What algorithms can be used for planning the transition to the objective state. How
can multiple control loops be organized and avoid interfering.

• Act. Determine which are the managed elements, and how can they be manipulated.
Which techniques are used, f.e., parameter tunning or architectural modifications. The
changes to perform may be predefined or dynamically generated.

IBM proposed a reference architecture for autonomic computing [IBM06], in which the cen-
tral element is called autonomic manager. An autonomic manager implements the autonomic
behaviour by providing an autonomic control loop that implements the activities defined in the
generic feedback control loop. The phases of the autonomic control loop are defined as: Monitor,
Analyse, Plan, and Execute, and they are usually referred to as the MAPE autonomic control
loop. Sometimes also a common element called Knowledge Source is highlighted, which repre-
sents the management data that can be shared for all the phases, and the loop is called MAPE-K
autonomic control loop. The main activities of each phase are shown in Figure 2.7 and include:

• Monitor. Provides the mechanisms to collect, aggregate, filter and report monitoring data
collected from a managed resource through sensors.

• Analyse. Provides the mechanisms that correlate and model complex situations and al-
low the autonomic manager to interpret the environment, predict future situations, and
diagnose the current state of the system.

• Plan. Provides the mechanisms that construct the actions needed to achieve a certain goal,
usually according to some guiding policy or strategy.

• Execute. Provides the mechanisms to control the execution of the plan over the managed
resources by means of effectors.

Monitor Execute

Analyse Plan

Knowledge

EffectorsSensors

Sensors Effectors

Autonomic Manager

Managed Resource

Figure 2.7: Autonomic Control Loop [IBM06]

The design of the autonomic manager considers the possibility of arranging several auto-
nomic managers in a hierarchical architecture [MKS09]. This kind of architecture has the goal
of making the autonomic behaviour more scalable and supporting different autonomic control
loops. In such setting, some autonomic managers will be located in a low-level, near the man-
aged resource and will control short term goals like limiting the concurrency, or tuning some
parameters of the managed resource; while higher-level autonomic managers will have a global
view of the system and handle long term goals like performing load balancing on multiple re-
sources or execute modifications in the architecture of the managed system.
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One possible setting for the reference architecture can be exemplified in Figure 2.8. In this
setting the architecture is arranged in three layers where a high-level orchestrating manager
controls a set of intermediate resource managers, where each one of them may control a different
aspect of self-management (like optimization, security, healing) and may have at its command
a set of managed resources. Each managed resource may implement a local autonomic control
loop, or may just offer interaction through its sensors and effectors. At the same time a manual
(human manager) may intervene at any level of the hierarchy through a management console,
and all the layers share a common knowledge base upon which to take their decision. The
interesting part of this hierarchical setting is that all the communication between the different
autonomic managers is enacted only through their sensors and actuator interfaces.
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Figure 2.8: An example for Autonomic Computing Reference Architecture [MKS09]

2.5.2 Self-Adaptability and Self-* Properties

Self-management is tightly related to the term self-adaptation, and in many cases both terms
can be used interchangeably [ST09]. Self-management refers to the capability of the system to
know itself and its environment, and modify itself as a reaction to internal or external condi-
tions. We will refer to self-adaptation as the more general behaviour of a system of modifying
internal characteristics of itself in order to comply with certain goals. Of course, self-adaptation
to varying conditions can only be obtained by properly integrating self-managing capabilities.

Self-management properties are usually expressed as a set of characteristics called self-*
properties, depending on the adaptivity goal they target. Salehie and Tahvildari [ST09] describe
some of this self-* properties in a hierarchical arrangement shown in Figure 2.9.

Self-Adaptiveness

Self-Configuring

Self-Optimizing
Self-Healing

Self-Protecting

Self-Awareness Context-Awareness

General Level

Major Level

Primitive Level

Figure 2.9: A hierarchical view of self-* properties [ST09].

In this hierarchical view, the General Level refers to the global objective of self-adaptivity,
which can encompass several properties referred to as self-maintenance, self-control, self-evalua-
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tion, or self-organization, depending on the major goals they try to achieve. The properties
grouped in the Major Level are the main ones introduced by IBM [KC03] and form the basis for
achieving more general goals:

• Self-Configuring refers to the capability of reconfiguring automatically and dynamically
in response to internal or environmental changes by installing, updating, integrating, and
composing or decomposing elements.

• Self-Healing is the capability of discovering, diagnosing and reacting to disruptions. It can
also be tackled by anticipating potential problems in order to prevent failures. Self-Healing
may be decomposed in tasks like self-diagnosing and self-repairing.

• Self-Optimizing, also referred to as self-tuning or self-adjusting, refers to the capability
of managing the performance or resource utilization of the system in order to satisfy the
requirements of different users. Internal goals may be related to end-to-end response time,
throughput, utilization and workload.

• Self-Protecting is the capability of detecting potential threats to the system, f.e., by identi-
fying hostile behaviours, and taking actions to avoid them or to mitigate their effects.

Finally, the properties mentioned in the Primitive Level are expected to be those that allow
the ones of the level above to be effectively implemented. Concretely they refer to the capability
of being aware of its own state (self-awareness), and to get information of the environments
(context-awareness). Both properties are the basis for taking decisions with respect to any of the
properties of the level above.

2.5.3 Autonomicity and Services

As mentioned in Section 2.1.4, one of the challenges in service orientation is to provide auto-
nomicity to service-oriented applications in order to be able to adapt to changing conditions in
such environments, and resolve problems with minimal human intervention.

Autonomic support for services can provide self-configurable services that can configure them-
selves and adjust to different environments; self-healing services that can react to disruptions
in their own functioning, or in their dependencies, and can take corrective actions to avoid or
alleviate major disruptions; self-optimizing services can tune themselves to better adjust to the
end-user needs, or optimize their resource utilization; and self-protecting services can detect hos-
tile activities (like access violations, or denial-of-service attacks) and take corrective actions to
reduce their vulnerability.

In Section 2.1 we characterized service-based applications as being highly dynamic envi-
ronments, and exhibiting heterogeneity in terms of implementing technologies, providers and
management capabilities. Naturally in such environments it becomes hard to correctly manage
all the possible situations that can arise: the sudden unavailability of a service, a change in its
QoS characteristics, the availability of new services with other QoS characteristics, the influence
of a modification in one service on the overall composition, the handling of potentially conflicting
decisions. Autonomicity seems to be an appropriate approach to handling such tasks.

When introducing autonomic behaviours to service-based applications, it is also possible to
use different levels of granularity (referring to the model of Figure 2.2). At the level of Service
Foundations, autonomicity can be seen as the capability of a service to adjust to its individual
requirements by modifying some parameters or adjusting its resource consumption on the in-
frastructure where it is hosted. When considering the level of Service Composition, adaptability
can take care of the compliance of the whole composition with respect to some goals, and may
dynamically trigger a reconfiguration of the composition in order to adapt to some condition.
Finally, in the Service Management level, adaptability may be used to ensure SLA compliance
according to some agreed goals.
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2.6 Summary

In this chapter we have presented the several areas around which our contribution is related.
We have introduced the subject of service-orientation, which drives the development of many

current applications, in a situation where the construction of new applications is often guided by
the reutilization and intelligent composition of several existent services developed by indepen-
dent parties, to provide added-value services.

In this context, the infrastructure support for running such applications has been changing
from locally hosted “on-premises” infrastructure to highly available and dynamically scalable
infrastructures as Clouds, whose capabilities are offered “as a Service”. By relying in Cloud
services, providers can offer their services, and free themselves of infrastructure maintenance
costs. At the same time a proper management of the elasticity of Cloud infrastructures can help
in the adaptation requirements of possibly autonomic services.

The development of SOAs has taken many approaches. Perhaps one of the most industrially
supported of them has been the SCA model which uses properties of CBSE to drive the design of
service-based applications and provide an structured way to compose them, independently from
specific implementation technologies. We use this same support for describing the design of our
framework in Chapter 5, while we also consider runtime modifications, which are not included
in the main SCA specifications.

Finally, we have pointed out the usefulness of the ideas from Autonomic Computing to ad-
dress the challenge of having more adaptable services that can dynamically modify themselves
to the user needs and can target SLA compliance. In particular, the implementation of an auto-
nomic feedback loop can help services to implement self-* properties.

Our work takes ideas from these areas to propose a component-based framework that can
take in charge the adaptability task in services-based applications. We propose separate compo-
nents for implementing each of the tasks involved in an autonomic control loop. The objective
behind this separation of concerns is to better adapt to the management needs of a service-
based application by attaching the autonomic control loops close to the services that needs to
be managed. The component-based approach helps to structure the communication between the
different phases, and allows to modify the logic of each phase to facilitate the adaptation of the
autonomic behaviour as it is needed. The framework aims to consider all the levels of service-
based application, allowing to introduce concerns related to the composition of the services and
to lower level infrastructure details, by leveraging these concerns to a common level where they
can be uniformly managed.

However, a broad body of work has been in the different areas that comprise an autonomic
control loop, in particular by applying some of these tasks to service orientation and resource
management. In the next chapter, we describe more deeply the distinct phases of the autonomic
control loop and the current works that exist around them. Section 3.1 describes challenges
specific to each phase, and present some works that address these challenges. Then, in Section
3.2.2 we describe a set of frameworks and tools that have been developed to provide autonomic
behaviour to applications by implementing autonomic control loops, including those that have
been applied to service-based applications, whose ideas have inspired our work.
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This chapter presents the state of the art with respect to the different phases of the autonomic
control loop. The analysis is separated in two parts: section 3.1 describes advances in each
of the involved phases: monitoring, analysis, planning, and execution, and mentions research
works and tools whose main objective fits in one of the steps that we want to enable through
our framework. Section 3.2 identifies works that integrate some or all of the concerns of the
autonomic control loop and that does not fit in only one of them. Finally, in Section 3.3, we
compare the analyzed frameworks and tools in terms of the features that we have identified as
important.

3.1 Phases in the autonomic control loop

We present advances in the different steps that conform the autonomic control loop. Namely we
separate the description through each one of the phases of the autonomic control loop: monitor-
ing, analysis, planning, and execution. It is necessary to mention that, while we have established
a separation between the phases of the autonomic control loop, several of the works analyzed
have not been developed with that approach in mind and consequently can not be fitted only in
one category and some of them present overlapping features with other phases. However, we
have focused the analysis in the most prominent features of each work, and in those that are
more relevant for our work.

3.1.1 Monitoring

Monitoring is a very broad subject, which has received a lot of attention from the community.
Gathering data from a running program provides valuable feedback about the behaviour of the
program and may help to find points for introducing improvements.

27
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However, monitoring does not come for free. A monitoring system requires some degree of
intrusiveness on the application that is going to be monitored. Monitoring tools usually must
make a trade-off between the intrusiveness they have on the application, and the precision of the
data they gather. A highly intrusive approach may provide precise data about the program, but
may introduce undesired side effects that distort the results. On the other hand, a monitoring
approach that is too separated from the application may provide only vague information about
the program execution.

Monitoring techniques and tools can be analyzed from several points of view: intrusiveness,
dynamicity, flexibility, scalability, or the types of applications they target. In the following we
describe some tools and monitoring techniques from the point of view of a running application.

3.1.1.1 Profiling tools

Data gathering techniques were initially designed for single monolithic applications, and have
the objective of profiling an application, this is, obtaining runtime information that characterizes
the behaviour of the application, and help to introduce optimizations.

Profiling may use several techniques for gathering data:

• Manual Instrumentation. Manually introducing monitoring code into a program is one
of the most simple and direct ways to obtain information about the runtime behaviour
of a program. However, manually introducing monitoring code inside an application is
highly error-prone, intrusive, and impractical in complex applications as it requires a deep
knowledge about the functionality of the application.

• Compiler-based Instrumentation. Several compilers allow to introduce profiling code
during compilation. While this task is less error-prone, it is limited by the profiling features
provided by the compiler. Once the program has been compiled with profiling features
enabled, it can be executed using an external tool that captures the profiled information
and displays it. This is the approach used by GNU gprof [Fen].

• Interception-based Instrumentation. Languages that can be interpreted or executed
in virtual environments, like Java, .NET or Python, provide instrumentation at the virtual
environment level, and allow to use hooks. Hooks are special points in the execution where
an event is generated or some monitoring code can be attached. This technique is more
dynamic and less intrusive as it does not require changes on the functional code, while
it also allows to program separately the monitoring code. In some cases the hooks are
predefined by the virtual environment. This approach is used by tools like JVMTI (JVM
Tools Interface) [Ora], .NET, and the Python profiling module.
A more flexible approach is that used by aspect-orientation [KLM+97]. The programmer
can define pointcuts as points where the execution flow can be intercepted by an aspect
code. The aspect is programmed separately and weaved into the application code at compile
time. This approach allows to introduce custom monitoring code in an independent way,
although this flexibility is only limited at compile time.

• Statistical Profiling. Statistical profilers use regular sampling at the hardware and/or
operating system level, while leaving the binary code untouched. By probing the state of
the hardware or kernel indicators, they can provide an approximate view of the behaviour
of the application. The precision of the data gathered may depend on the frequency of the
sampling, though intrusiveness is still very low. The flexibility of this technique is limited
as the information obtained is mostly general and hardly associable with specific parts of
the application. Examples of this tools are Intel VTune [Int], AMD CodeAnalyst [AMD]
and Apple Shark [App].

Depending on the kind of the data gathered, information may be displayed in several forms:
a call graph, detailing dependencies between method calls; statistical summaries, detailing re-
source consumption per method or unit of computation; or an execution trace, detailing sequence
of method calls and performance related information.
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3.1.1.2 Monitoring Distributed Applications

As the complexity of applications increased and distributed applications became common, more
extensible, flexible, efficient and less intrusive approaches were required. The monitoring task
became more complex as the execution is not limited only to a single executing entity.

In distributed applications, dependencies between sub-parts of the application spread over
possible large geographical areas, introducing sources of bottlenecks in network interfaces and
communication issues. The complexity of these systems, which may be composed of heteroge-
neous technologies, required higher-level tools (that is, at the level of the business operations) to
analyze the performance of such environments, and to check that the behaviour of the applica-
tion is the intended one.

Autopilot Autopilot [RVSR98] defines a model where sensors can be attached to an application
and registered in an external registry. Using the registry, sensors can be contacted by a client,
and provide data to them via events. Autopilot is one of the first works to separate the monitor-
ing task from the rest of a more global adaptation process, which is better described in Section
3.2.2.1. The separation of sensors, that work as data providers, and clients, that work as data
consumers was used as inspiration for later grid-oriented monitoring models.

ARM ARM (Application Response Measurement) [Joh04] is an open standard published by The
Open Group1 for monitoring and diagnosing performance bottlenecks within complex enterprise
applications that use loosely-coupled designs. ARM defines a simple API that applications, or
the middleware where they run, can use to transfer information about their transactions to an
external management software. Implementations of the API have been provided for Java and
C/C++.

ARM works by manually introducing API calls in the target application. This step defines
what transactions will be monitored. The API calls are implemented by a local ARM agent,
which can be accessed from a management application. The management application connects
to the agents, and can query information from them to perform analysis, correlation of calls,
or provide graphical views. This allows to build traces and end-to-end call graphs that help to
locate failures or bottlenecks in the application. The architecture of client/server application
instrumented with ARM is shown in Figure 3.3.
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Figure 3.1: ARM monitoring architecture in a client/server application [Joh04]. Clients and
server are instrumented with ARM API calls, and their associated ARM Agents perform the
monitoring task, which can be used by management application.

Applications like the Apache HTTP Server and IBM Websphere Application Server are in-
strumented with ARM standard calls, meaning that it is possible to monitor them through ARM
agents.

1http://www.opengroup.org/



30 Chapter 3. State of the Art

Magpie Magpie [BDIM04] is a toolchain for automatically obtaining the workload of a system
under realistic operating conditions. Magpie does not introduce additional instrumentation in
the application, but relies on events generated by the Event Tracing for Windows logging infras-
tructure that works at the kernel level. During the service of a request, events generated by this
infrastructure are detected and correlated to trace the path of requests and obtain performance
measures. This way, a request is described according to its path taken through all the system
components, and their resource consumption.

Pinpoint Pinpoint [CKF+02] is a tool for problem determination in distributed applications.
Pinpoint performs middleware instrumentation to introduce and propagate unique identifiers
through the path of a request, and packet sniffing to detect and correlate network communi-
cation. Using the collected information, a data clustering analysis engine deduces faulty or
poor-performing components. Pinpoint has been implemented by instrumenting the J2EE plat-
form.

3.1.1.3 Monitoring in Grid Platforms

Distributed applications with high performance needs require powerful computing infrastruc-
tures which are made available through computational Grids. Grid infrastructures comprise
hardware, software, and knowledge resources, and aims to “enable resource sharing and coor-
dinated problem solving in dynamic, multi-institutional virtual organizations” [FKT01]. As a
consequence, one of the characteristics mentioned of Grid platforms, is that they “deliver non-
trivial qualities of service” [Fos02], referring to the fact that the constituent resources may be
managed to satisfy complex user demands and several aspects of quality of service like perfor-
mance, availability, security, and co-allocation of different resources.

Execution on a computational Grid requires to monitor not only the performance of the dis-
tributed application, but also the involved grid resources as they influence the overall perfor-
mance. Moreover, as Grid technologies span through heterogeneous Virtual Organizations (VO),
it becomes common that the grid resources are not completely under the control of the appli-
cation programmer, so it is not always possible for the programmer to instrument the platform
over which the application runs by using the tools described in the previous section. Instead,
grid users are commonly tied to specific grid software or tools.

In this context, Grid providers usually provide some level of resource monitoring that is made
available for Grid users. Grid monitoring tools must be able to handle scalability and efficiency
issues, as the amount of sources of monitoring data and the monitoring data itself increases
rapidly. Several grid monitoring tools have been proposed [ZS05]. Here we mention some of
them where the underlying ideas, in particular about scalability, are relevant for our work.

Globus MDS Globus MDS (Monitoring & Discovery System) [All, CFFK01] is part of the Globus
Toolkit for grids. Globus considers elements that acts as sensors, called Information Providers;
elements that aggregate information from sensors and produce composed data, called Grid Re-
source Information Services (GRIS); elements that aggregate different GRIS and allow to form
a hierarchy, called Grid Index Information Services (GIIS). The GRIS elements, by aggregating
different monitoring information providers, are able to federate multiple overlapping Virtual
Organizations (VOs), which are uniformly managed by GIIS elements.

The hierarchy of sensors, GRIS and GIIS communicates through two defined protocols for
transmitting and discovering monitoring information. The Grid Information Protocol (GRIP)
is used to discover (search) for monitoring data on some part of the hierarchy, and to recover
(lookup) data according to some criteria on a specific provider. The Grid Registration Protocol
(GRRP) is a notification mechanism through the different elements become aware of each other.
The communication protocols GRIP and GRRP, and the information model used to query and
retrieve monitoring data have been implemented using OpenLDAP.
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Through this hierarchical approach, Globus MDS allows to collect monitoring data from mul-
tiple VOs in an uniform and scalable way. We remark that MDS does not define the metrics and
sensors that are going to be available, but provides an architecture for discovering and collecting
them efficiently.

MDS has been superseded in the last version of the Globus Toolkit by MDS4 which recre-
ates the hierarchical approach using Web Services technologies and interoperable standards for
propagating monitored information, and it is better described in Section 3.2.1.8. Nevertheless,
the monitoring architecture originally presented by MDS has served as a basis for later devel-
opments in scalable grid monitoring architectures.

SCALEA-G SCALEA-G [TF04, TSF06] is a unified performance monitoring framework for grids
resoures and applications. SCALEA-G provides a peer-to-peer Grid infrastructure of Sensor
Manager Service that collect and store monitoring data from sensors. Sensors can be system or
application level, and can interface with existing monitoring services via plugins, like Globus
MDS [All], Ganglia [MCC04], or Nagios [nag]. The Sensor Manager Service can be used by
clients to subscribe and query for monitoring data, which is represented using an XML language.
Sensors Manager Services are able to locate each using a Registry Service. SCALEA-G is based
on the Web Service Resource Framework (WSRF). SCALEA-G attempts to solve the scalability
problems by a plain peer-to-peer approach instead of hierarchy.

Ganglia Ganglia [MCC04] uses a hierarchical design targeted at federations of clusters to
achieve scalability. Ganglia defines two daemons: gmond, targeted to single clusters, and gmetad
used to federate different clusters and forming a hierarchy. Monitored data is transmitted using
XDR (eXternal Data Representation), an IEFT standard to transmit data through heterogeneous
architectures. Clients use a command line program to access the monitoring data and a set of
front-ends are available to provide visualization. Their scalable approach has been widely used
in several high performance environments [Gan].

Figure 3.2: Ganglia architecture [MCC04]

GMA The Global Grid Forum formalised the ideas behind several grid monitoring tools in the
Grid Monitoring Architecture (GMA) [TAG+02]. GMA identifies three kind of components: pro-
ducers or event sources, which produce monitoring data and makes them available; consumers,
or event sinks, which requires and consumes monitoring data; and directory services, which reg-
ister producers and allows to discover them, working as a lookup service. The model is shown in
Figure 3.3. Moreover, the model allows that some components act as producers and consumers
by implementing the appropriate interface, and taking the role of intermediaries. These inter-
mediaries can be used to filter monitoring data and lower the load on producers.
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Figure 3.3: Components of the Grid Monitoring Architecture

Implementations of monitoring architectures for grids like GridRM [BS03], uses the GMA
to provide an extensible tool for managing grid resources. GridRM uses a set of Java-based
gateways that collects and normalises events in order to provide a uniform access to different
data sources.

In general, grid monitoring systems are oriented to monitor resource consumption and focus
on scalability and efficient communication and aggregation of monitoring data. These concerns
are addressed mostly by using intermediate republishers of monitoring data that act as filters
and reduce communication, following the approach of the GMA model [ZS05].

There is a high diversity of APIs and it is hard to find points for interoperability between the
different platforms, as the grid platforms are usually hosted by institutions for specific purposes
and provide different tools for using them. These characteristics make difficult to concretize
the idea of a unique global Grid. Consequently, monitoring approaches are specialized to the
targeted Grid infrastructure.

3.1.1.4 Monitoring of Cloud Platforms

On recent times, Cloud Computing has emerged as a common term that seemingly, and not com-
pletely erroneously, shares several visions and challenges with Grid platforms. The evolution of
Cloud platforms has come from a shift in focus from a platform that provides an infrastructure
for storage and computational resources, to one that aims to deliver more abstract resources and
services [FZRL08].

Cloud platforms include features like virtualization and dynamic elasticity that introduces
challenges in the monitoring of the resources provided by the Cloud platform.

Virtualization introduces more granularity at the level of the computing resources available.
Cloud platforms offer different levels of services to the end user, which is exposed only to a
predefined API, and normally the underlying lower level resources are opaque to the users, so
that tracking a problem down through this software and hardware stack might be more difficult.

Monitoring approaches for Cloud platforms that delivers services, that we refer in the fol-
lowing as Service Clouds, must be aware of virtualization of resources. In fact, monitoring is
required as part of the Cloud platform to be able to provide dynamic elasticity and perform load
balancing between instances. Moreover, as Cloud resources are commonly delivered in a pay-
as-you-go model, end users will be willing to have detailed monitoring information about their
resource usage.

With the advent of multi-clouds hosting of services, commercial monitoring tools have begun
to target federated cloud environments, where the tools must aggregate metrics from different
cloud providers, and be able to normalize values and provide an abstract view of the Cloud
environment.
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CloudStatus CloudStatus [Hyp] is a Cloud monitoring tool provided by Hyperic, that is able to
collect and aggregate monitoring metrics from services hosted in different cloud environments.
By normalizing and aggregating metrics, CloudStatus is able to provide a unified view of the
health of the Cloud hosted service, and helps to determine causes for performance problems.
The set of monitoring metrics can span from overall cloud performance to individual service-
specific metrics. Currently, CloudStatus is able to monitor Amazon Web Services and Google
App Engine cloud providers.

LogicMonitor LogicMonitor [Log] is a monitoring tool for highly distributed applications that,
among others, is able to handle monitoring of virtualized resources and custom metrics. Log-
icMonitor uses a set of lightweight agents deployed in each service that must be monitored.
They have developed an extensive set of agents for several common cloud platforms and hosting
servers. Agents communicates their collection results to a central LogicMonitor server, com-
municating by the 443 SSL port which is usually available through most firewalls. The Logic-
Monitor servers are hosted in their own highly available platform, where they are analyzed an
exposed to the end-user.

Lattice Lattice [CGM10, CGC+10] is a framework to monitor virtualized resources on Cloud
environments. Lattice is defined around the concept of producers and consumers, so that data
sources (probes) act as producers of data, and monitoring elements act as consumers. Moreover,
a third element called communicator is introduced, which works as a monitoring information de-
livery service, so that the communication channel between probes and monitors can be changed
without affecting them. The ability to monitor several levels of the Service Cloud environment
is also considered. Data sources are implemented to provide information from the infrastructure
level (the physical hosts), the Virtual Execution Environments deployed on each host, and the
services that are available on the Service Cloud. Lattice is able to gather data from federated
service clouds by using monitoring brokers on each federated cloud.

3.1.1.5 Monitoring of service-based applications

Service-based applications introduce several concerns for monitoring. Services are developed
to accomplish specific tasks, and are expected to satisfy contractual requirements related to
Quality of Service (QoS) properties. Monitoring them in an effective way is a key requirement
for checking that these contractual goals are accomplished.

Service properties may be identified as functional properties, where the objective is to verify
if the service delivers the functionality that is expected from him; or non-functional properties,
related to the QoS of the application, where concerns like availability, security, performance,
reliability, cost, energy consumption, and others are of interest [GG07].

Consequently, monitoring concerns for service-based application can be manifold. Concerns
brought by service-orientation like dynamicity, loosely coupling and heterogeneity may be present
at the service application level, at the service platform or middleware, or at the physical infras-
tructure level, making the monitoring task more complex.

The need for monitoring service-based applications at runtime has brought a large number of
research projects, both from the academic and from the industrial world. Tools like those men-
tioned for distributed environments usually focus on measuring the performance of resources at
an infrastructure level, but seldom at an application level as this is a concern of the program-
mer of the application. They also are developed for specific implementing technologies, which is
hardly extensible or cannot interoperate with heterogeneous providers.

In general, it is not possible to introduce instrumentation directly on services that are pro-
vided by external parties. Monitoring tools must rely on features provided by the middleware
where the services run, and usually resort to interception of services communication, or detec-
tion of events [CS10]. Monitoring tools must also be flexible enough to allow to define metrics
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that were not originally considered in the design of the application, or that can be defined in
terms or existing metrics.

Service orchestration engines are a suitable place to introduce interception, as they control
all the steps of service interaction [MRD08]. Approaches like the proposed by Baresi et al.
[BGG04] describe a method to automatically add monitoring components to a BPEL orchestra-
tion, using annotations expressed in comments inside the BPEL description. The annotations
are pre-processed and transformed into additional components that are included as part of the
orchestration. An evolution of the idea of introducing modifications into a BPEL description is
taken by the ORQOS platform [BRL07]. ORQOS relies on policies described using the declar-
ative language QoSL4BP [BRL08] and introduces monitoring activities into the BPEL descrip-
tion. Policies can be used also for describing QoS requirements and adaptation actions.

Aspect-oriented approaches have also been proposed; Bianculli and Ghezzi [BG07] describe a
solution that uses AspectJ to introduce pointcuts into the open source ActiveBPEL2 engine, that
interact with a conformance Monitor element. This approach avoids manipulating the BPEL
description for each monitored process, but harms portability.

As monitoring becomes an orthogonal requirement in service-based applications, dedicated
QoS Monitoring infrastructures have been proposed. Zeng et. al [ZLC07] describe such an
infrastructure, where most of the QoS metrics are associated to evaluation formulas that can be
computed and updated efficiently based on events detected by a BPEL engine.

Given the wide range of properties that can be measured in a service, monitoring frameworks
and tools usually are tied to a language that specifies which properties must be monitored. These
descriptions are, in some cases, devoted to explicitly specify monitoring requirements, or in other
case are the result of a previous negotiation between consumer and providers. In the following
we mention some frameworks used to gather properties of running services, focusing on the
monitoring aspect.

Dynamo Dynamo (Dynamic Monitoring) [GG07] is a toolset that instruments a WS-BPEL pro-
cess to monitor services interaction. The weaving of monitoring calls takes place at deployment
time and is based on a description given in WSCol, an specification language to describe pre-
and post-conditions that are expected for each process. Dynamo can collect monitoring data by
analyzing the variables mentioned in the services description, or by using external analyzers.
After each invocation call, the execution is stopped and the monitoring and analysis take place.

Dynamo enforces separation of concerns by defining separately the conditions that are of in-
terest for the service execution. As the instrumentation takes place at deployment time, it lacks
the flexibility required in case that some conditions may change or new monitoring requirements
are introduced.

Cremona Cremona (Creation and Monitoring of WS-Agreements)[LDK04] is a framework pro-
posed by IBM to monitor functional and non-functional properties of services interactions. The
properties to monitor are expressed using the WS-Agreement language [ACD+07]. Cremona
provides an “Status Monitor” component that is specific to a service, and it is used to monitor
the metrics needed to create an agreement. After an agreement is provided, Cremona uses a
“Compliance Monitor” to connect interfaces of a service that provide the monitoring data.

One of the advantages of Cremona is to allow the connection to the monitoring interfaces
provided by the target service, by defining plugins, and without the need to instrument the
service implementation. This approach allows a finer grained and flexible monitoring approach
than what can be obtained by intercepting service interactions. However, the set of measurable
properties can only be defined at design time.

Cilia Cilia [GPD+10] is a mediation framework designed to facilitate systems integration, by
the development of decoupled mediation components that implement the mediation tasks.

2http://www.activebpel.org
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Cilia follows a component-based approach in which components implement simple tasks for
data processing like transformation and filtering, or communication tasks like data gathering
and data delivery. The conceptual model presents two kind of components: Mediator components
that handle the data manipulation tasks, and Binding components that provides the communi-
cation protocols. Cilia components can be assembled into mediation chains, in order to provide
a complete mediation between services and data.

Cilia features runtime evolution of mediation architectures. Runtime evolution is supported
by a runtime model that is maintained using a technology independent representation. Modifica-
tions over the runtime model like the addition/removal and binding/unbinding of mediators are
reflected in the real instances. The implementation provided, which supports this dynamic re-
configurations, is supported by iPOJO [EH07, EHL07] components (which are mentioned among
the adaptation support technologies in Section 3.1.4.2).

Although the overall objective is to facilitate the integration of service-oriented systems, in-
stead of making the managed system itself more adaptable, Cilia shares our goal of providing a
flexible architecture designed for supporting non-functional tasks.

3.1.2 SLA Analysis

The Analysis step in the autonomic control loop implies the checking of conditions to verify if the
application is complying with certain goals. In this work, we target component-based service-
oriented applications, where such goals are stated as conditions expressed inside SLAs. Hence,
in this section we mention challenges and advances in automatic analysis of goals in SLAs.

The SLA Analysis involves several challenges. An automated SLA Analysis process requires
a precise and unambiguous definition of the SLA, that can be checked by an engine. The engine
must be able to understand the specification and must be customizable enough to collect the re-
quired data, model it in a logical manner and efficiently evaluate the SLA conditions at runtime
[SDM01]. Also, the SLA representation must be generic enough to represent new conditions,
as it is generally not possible to know or anticipate all the possible SLA goals that can be re-
quired to enforce, nor it is possible to foresee all the different service providers that may need
to be contacted to obtain the monitoring information needed for SLA checking. Also important
in our context is to have flexibility, so that the set of SLA goals can be modified at runtime;
in fact, as we target evolving service-oriented applications, it is natural that the SLA goals can
also evolve. The most relevant works we have found about SLA representation are presented in
section 3.1.2.1.

Given a proper description of an SLA, the objective is to ensure that the service complies
with these goals at runtime. This objective can be addressed in a static way by, f.e., choosing
a set of services in a composition whose characteristics comply with the goals stated in the
SLA. However, at runtime, environmental conditions can change, and it is necessary to perform
runtime SLA monitoring, and ensure runtime SLA compliance. In this context, it is useful to
distinguish the scope of actions taken by the existing works:

• Those approaches that perform SLA monitoring attempt to, given an SLA description,
build or use an existing runtime monitoring infrastructure to obtain the metrics needed
to check the compliance to the SLA and, in case the service does not comply with some goal
at runtime, the system triggers a notification indicating that an SLA violation has occured.
These works are mentioned in section 3.1.2.1.

• Other works attempt to ensure SLA compliance at runtime. In this situation runtime SLA
monitoring is required but detecting that an SLA violation has happened is not enough.
Instead, the objective is to detect the possibility of an SLA violation before it actually hap-
pens, and trigger preventive actions in order to avoid the occurrence of the SLA violation.
This way the service compliance to the SLA is not disrupted. These kind of efforts, that
mostly use statistical predictors and stored history, are presented in section 3.1.2.2.
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In the following we mention some works related to the challenges we have mentioned for SLA
Analysis.

3.1.2.1 Languages for SLA description and SLA monitoring

In general, SLA languages refer to similar concepts. As they are contracts between service
consumers and services providers, they usually contain: (1) a description of the parties involved
in the contracts, (2) a list of objectives, which we refer to as Service Level Objectives (SLO), (3)
and a set of conditions or constraints that concretely express the SLOs. The actual scope of
each concept may vary in each language, but whenever possible, we intend to relate the concepts
inside each language to this vocabulary.

Most of the SLA languages proposed are defined in terms of XML schemas, in order to be ex-
tensible and support a generic set of constraints. SLA languages were initially strictly oriented
to non-functional QoS related capabilities whose compliance was of importance for systems ad-
ministrators and developers in order to optimize the application. Later approaches allow to
describe also conditions related to the functional aspect of the application that may be of inter-
est in consumer/provider relationships. Most of them are defined along with a framework to
monitor the required data needed to check the compliance to the SLA.

Sahai et al. One of the first SLA languages that can be automatically processed was proposed
by Sahai et al. [SMS+02], as an XML schema that takes into account a date constraint (a time
period where the constraint must be valid), and a set of SLOs. An SLO is defined as a set of
clauses that include the data item to analyze (measuredItem); the moment when the condition
is analyzed (evalWhen); a range of measures to consider (evalOn); a function to apply to the
set obtained (evalFunc); and an action to take when the evaluation has been done (evalAction).
Some of these elements can also be empty. Although simple, this approach allows to express
quite complex SLAs regarding QoS constraints [SDM01]. The evalAction element allows to plug
reactor elements to clauses and provide some post-processing.

SLAng SLAng [SLE04, Ske07] is a domain-specific language for describing SLAs in terms of
QoS characteristics, in loosely-coupled application services provisioning scenarios which com-
municate through a network service. The objective is to obtain a description of the QoS charac-
teristics that is precise enough to compare and reason about them.

The abstract syntax of SLAng is described using the EMOF meta-model standard, an exten-
sion of UML. The constraints are defined formally using the Object Constraint Language (OCL)
to provide the semantics. The SLAng meta-model describe broad elements like PartyDefinition,
ServiceDefinition, PenaltyDefinition and AdministrationClause, where each one of them can be
extended to define an SLA language for each concrete scenario. Actually, SLAng can be better
defined as an abstract language that describes general elements that take part in the descrip-
tion of QoS characteristics, and it must be extended to specify concrete SLAs, serving as a base
to creating SLA description languages.

One consequence of the abstract definition of SLAng is the possibility to reason about the
model. The authors present the concept of monitorability. Monitorability is defined as the ca-
pability of other parties to oversee the compliance to the SLA [SSCE07], so that any decision
about SLA violation cannot be contested by the client or by the provider, and eventual penalties
can be applied in a trustworthy way. The assessment of monitorability is obtained by placing
SLA conditions only on events that are observable by all the involved parties, and a method is
provided to determine monitorability of SLAs described with SLAng.

SLAng does not define a monitoring infrastructure to assess the compliance to the SLA, as
it intends to be as independent as possible of concrete implementations.Later works have used
SLAng [MPMJS05] to automatically build monitoring elements from an SLAng based descrip-
tion, as part of a monitoring middleware for SLAs. This monitoring middleware uses SLAng to
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identify the metrics that need to be monitored and enforces the connection to the sources of that
metrics to feed an SLAng analysis engine.

WSLA WSLA (Web Service Level Agreement) [KL03, LKD+03] is a framework developed by
IBM 3 for specifying SLAs between a service consumer and a service provider and the obligations
of both parties, expressed in an XML language.

The WSLA language comprises three sections: (1) a description of the parties involved in
the contract including their technical properties and their available interfaces; (2) the service
description including the SLA parameters observable in the service and a definition of the SLA
parameters in terms of metrics; (3) the obligations of each party including action guarantees and
constraints over the described SLA parameters, in terms of SLOs expressed as conditions.

In addition to the language, the WSLA framework defines the existence of a measurement
service that is able to obtain the values for the specified metrics, and a condition evaluation
service which is able to check automatically the conditions that define an SLO.

WSLA does not include a protocol for SLA negotiation, assuming that this step has been
previously made. The obtained SLA description may complement existent WSDL descriptions
of services. The WSLA specification and an SLA compliance monitor that includes both the
measurement services and the condition evaluation service have been implemented as part of the
IBM Web Services Toolkit.

WSOL WSOL (Web Services Offering Language) [TPP+03] is an extension to WSDL for spec-
ifying constraints in web services. It introduces the notion of classes of services, to refer to a
concrete service along with its associated QoS conditions, so that one service can have many
classes offering different QoS levels.

The WSOL specification defines: service offerings as a representation of a single class of
service; constraint expressions, where functional or non-functional constraints can be specified,
relying on external ontologies, and access rights; management statements to describe the condi-
tions under which the service is offered; and reusability constructs to facilitate reutilisation of
previously specified constraints.

WSOL also gives support to specify some simple management actions. WSOL allows to spec-
ify what they call service offerings dynamic relationships, which can express predefined service
offering alternatives in case one particular service offering cannot meet the constraints. Al-
though these relationships must be predefined and they are static, it allows to guide adaptations
in the composition of the services at runtime in case an SLA violation is detected.

WS-Agreement WS-Agreement [ACD+07] is a standard developed by the Global Grid Forum
(Open Grid Forum) for specifying agreements between service providers and service consumers,
and a protocol for creating (as a result of a negotiation) and monitoring such agreements at
runtime.

The WS-Agreement language is defined as an XML schema containing two parts: Context
and Terms. The Context describes the partners: service consumer and service provider that take
part in the contract. The Terms describe the objective terms of the service provision. The Terms
section includes the service description terms that describe the functionalities that are going to
be delivered, and a set of service guarantee terms describing assurances on service quality that
need to be enforced during the provision of the service.

WS-Agreement also defines a single round negotiation process where the initiator sends an
agreement template to the consumer, which fills the template according to certain constraints
specified in the template, and sends it back to the initiator as an offer. The initiator then decides
the acceptance or rejection.

3http://www.research.ibm.com/wsla/
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WSAG4J4 is an open source implementation of WS-Agreement for Java based environments,
that has been used for implementing SLA Monitoring policies [CS10], and dynamic SLA negoti-
ation [PWZW09] by developing extensions to specify policies and service management.

CREMONA (Creation and Monitoring of Agreements) [LDK04], (whose monitoring frame-
work was mentioned in Section 3.1.1.5) includes a Java library that provides an architecture for
implementing the WS-Agreement negotiation process. The agreement processes is encapsulated
in an “Agreement Provider” that drives the negotiation and delivers an accepted agreement to
the monitoring framework. CREMONA works as an agreement middleware for binding service
providers and consumers and monitoring the compliance to the agreements.

WS-Policy The Web Services Policy Framework (WS-Policy) [W3Cd] is a W3C recommendation
to express the capabilities, requirements and general characteristics of entities in a service-
based system, expressed in an XML schema. According to the specification, a policy is a collec-
tion of policy alternatives, where each policy alternative is described as a set of policy assertions.
A policy assertion is a requirement on a service like transport protocol, security or QoS charac-
teristics. WS-Policy defines a set of operators to combine policy assertions.

WS-Policy is used to express conditions in the interaction of consumers and providers. By
expressing their capabilities using WS-Policy, consumers and providers can be aware of the ex-
pectations of each other and decide if they enter into an agreement or not. Once the agreement
is reached, policies can be related to specific technologies to enforce the agreed behaviour.

Being a general specification, WS-Policy does not provide specific constructs for each kind of
policy (security, reliability, monitoring), but it can be extended as required in a domain specific
way. WS-Col (Web Service Constraint Language) [BGP06] is an example of such an extension
targeted at specifying monitoring constraints on services executed by a WS-BPEL composition.

MoDe4SLA MoDe4SLA [BWRJ08] is an approach for diagnosing the cause of SLA violations in
addition to only detect them. MoDe4SLA introduces a dependency model constructed from the
SLO specifications (in an SLA language independent way) to determine the set of services on
which a specific service depends, and to calculate an impact factor for each one of them. This
way, upon an SLA violation, it is possible to drive the responsibility on the called services and
determine which of them are having an acceptable behaviour and which are likely candidates
for blaming or replacement.

The main contribution of MoDe4SLA is to consider explicitly the composing services on the
diagnosis on an SLA violation, and to introduce an impact factor per service, that can help to
drive a subsequent planning process. However, the dependency and impact analysis are rather
static and cannot evolve if the composition changes at runtime.

3.1.2.2 Prevention of SLA Violations

In order to ensure runtime SLA compliance, tools can not limit to only monitor a service and
detect when a violation has occurred. Instead, the approaches to ensure SLA compliance require
to execute an action to ensure that SLA compliance be restored. In our work, we have separated
the planning and execution of actions to restore SLA compliance from the proper detection of an
SLA violation. However, other approaches to deal with ensuring SLA compliance take a more
proactive approach and attempt to use prediction of SLA violations.

Prevention of SLA violations attempts to predict the occurrence of SLA violations before they
actually happen, allowing to take actions to avoid their occurrence. In order to prevent an SLA
violation, some kind of prediction must be made. Approaches for prediction can be based on
historical monitoring data collected from a service, and may involve the use of statistical esti-
mators and probability fitting algorithms. In general, a dynamic prediction takes into account
the elapsed part and the remaining part of the service, and must be able to take a decision in a
restricted time lapse.

4http://packcs-e0.scai.fraunhofer.de/wsag4j/
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Prediction in workflow compositions Canfora et al. [CDPEV05, CDPEV08] present a dynamic
approach for workflow compositions where the analysis of SLA compliance is performed after
the execution of each step of the workflow, as new information about the execution is available.
Given an objective QoS level QTH expressed in the SLA, the method updates two values: the QoS
level QACT achieved until the current step, and the estimated QoS level QEST after the execution
of the current step. The QEST is computed for each step during the QoS-aware composition of
the workflow according to predefined estimator formulas for each workflow construction: loops,
switches and sequences. Loops are estimated by annotating an estimated number of iterations;
switches are estimated by assigning probabilities to each branch; and sequences are estimated
by simple addition. When the values for QACT and QEST differ in more than a given percentage,
a replanning is preventively triggered.

EVEREST+ EVEREST+ [LS10] is an extension to the EVEREST framework, that can perform
prediction of QoS violations. EVEREST [MS07] is a generic monitoring engine for checking viola-
tions of software system properties. Conditions in EVEREST are expressed using EC-Assertion,
a language based on Event Calculus (EC) [Sha99], a first order temporal logic language. EVER-
EST has been used for monitoring SLOs in service-based systems.

Monitoring rules in EC-Assertion are expressed in the form body⇒ head, meaning that when
body is true, then head must also be true. Both sides are expressed in terms of standard EC
predicates like Happens(), HoldsAt(), Initiates(), Terminates(), and Initially().

The monitoring framework extends WS-Agreement to include SLA description, including con-
ditions expressed using EC-Assertion. The set of events that can be used is restricted to those
that can be observed during the execution of the service-based application, which is expressed as
a BPEL composition. A monitoring manager connects to the event sources of the service-based
application, and stores the events in an event database. A component called monitor filters the
events that are relevant for the specified rules in EC-Assertion and checks their compliance.

EVEREST+ allows to attach predictors to the EVEREST framework. EVEREST+ predictors
can use historical event data stored in the EVEREST database to determine the probability that
a given condition will be fulfilled or not, by fitting statistical distribution functions to them.
EVEREST provides an API to query the historical event data, so that custom EVEREST+ pre-
dictors can be attached to it.

This approach highlights the separation between the event storage and collection, and the
prediction function, which makes use of the stored events.

3.1.3 Planning

The planning phase in an adaptation loop corresponds to the construction of a plan to take a
system to a predefined objective state. In the case of adaptation loops for service-based appli-
cations, this step takes place after a condition, expressed within an SLO has been broken, in
systems that aim to ensure runtime SLA compliance.

The most simple approaches for determining actions, take the form of tables of rules that
include conditions and actions, where the relative truth value of the conditions determine the
action to take (fuzzy logic approach) like those presented in AutoPilot [RSR01]; the Event Cal-
culus expressions of EVEREST [MS07], where certain conditions may trigger a set of actions; or
the actions that may be embedded in some SLA descriptions [SMS+02]. All these approaches,
however are static, as the set of actions that can be taken is predefined at runtime.

Other works [LLJ+05, CDPEV08] involve approaches from the artificial intelligence area,
where the service has an initial state and, by means of heuristics, the service must be taken
to an objective state. Depending on the criteria that wants to be optimized, a cost function is
defined that can involve multiple QoS parameters. In these cases the set of actions is mostly
abstract and the planning algorithm must use the available information to create a concrete
plan.
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The set of actions that can be decided may also range from very simple actions like tunning
some parameters of a service (number of connections, resource usage), to execute replacement of
services or more complex reconfigurations of a composition. In any case, for effects or our work,
the objective of the planning phase is the generation of this set of actions, as we delegate the
execution to specialized tools like those mentioned in section 3.1.4.

In the general case, generating a reconfiguration plan for a service composition may involve
several steps: perform service discovery to find a set of available services; select a subset of
candidate services that can be used as replacement, which involves to check interface matching
(or adaptation); collect information about the candidate services to feed a decision algorithm;
and finally to select an appropriate set of services to bind.

The problem of selecting an appropriate subset of services from a set of services that imple-
ment the same functionality, subject to certain QoS constraints, is known as QoS-aware com-
position, and it is an NP-Hard optimization problem [BF05]. The QoS criteria under which a
composition is considered “better” than other may include multiple factors like price, perfor-
mance, energy consumption, security, reliability, or availability. Section 3.1.3.1 mentions some
approaches that have been used to perform an efficient QoS-aware selection and composition of
services.

Due to the dynamic nature of service environments, in most cases even an optimal composi-
tion may not guarantee a required QoS level at runtime, because the QoS characteristics of the
service may change at runtime and differ from the values used for computing the optimal com-
position. Section 3.1.3.2 presents some works that tackle the dynamic recomposition of services
at runtime.

Another topic in the computing of a QoS-based composition is the source of QoS data. It can
be obtained from QoS values exposed or published by the candidate service; it can be estimated
from a set of historical monitoring data; or it can be monitored dynamically from the client side
(as for example in [RPD06]).

3.1.3.1 QoS-aware Service Selection

The problem of QoS-aware selection can be seen from the point of view of substituting a single
service for another that provides the same functionality. Ghezzi et al. [GMPLMT10] compared
several strategies proposed for performing the selection of a single service based on QoS infor-
mation, along with an identification of situations where some of them present advantages over
the others. The strategies include local decisions, estimators of QoS parameters, proxy-based
selection, and a collaborative strategy, and they were analyzed in terms of how well balanced
is the assignation from a set of clients who wants to bind a service to a set of providers that
implement the same functionality. The strategies do not include the discovery step, and assume
that a previous filtering process has been performed to provide a set of concrete services, so the
decision step reduces to QoS based decision. In general there is no one-size-fits-all strategy and
some of them are better suited to certain conditions than others.

A more complex problem involves building a composition of services in order to achieve an
end-to-end QoS goal. The analyzed approaches consider workflow compositions that express
abstract services, each of them having a set of candidate concrete services that must be se-
lected. Several heuristics and nearly-optimal algorithms have been proposed for performing
this task efficiently [BSR+06] considering BPEL compositions [MCD10]. The approaches may
use techniques from genetic algorithms [LLJ+05, CDPEV08], linear and integer programming
[ZBHN+04]. A common way to separate the concerns of the workflow composition from the
selection of services is to design the composition as a set of abstract services with some op-
tionally defined QoS constraints, and bind them to proxies or brokers who are in charge of
collecting the required information from the candidate services and performing the selection
[YL05, DAT08, SDHS05] to bind concrete services to them. This approach has the advantage
that it separates the decision taking from the design of the workflow, which is viewed as a skele-
ton where concrete services can be bound and unbound guided by QoS constraints. Yu et al.
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[YZL07] evaluate a series of heuristics for sequential service flows, and more general and com-
plex flows by mapping to 0 − 1 integer programming, or to a graph model where appropriate
algorithms can be applied.

The mentioned works assume as input a set of services that can be effectively bound (or that
can be bound by performing a previous adaptation), as a result from a previous discovery step.
They also assume that the information about the QoS characteristics of the candidate services
is already available, or can be obtained by independent monitoring data, or by some available
estimator.

3.1.3.2 QoS-aware Dynamic Rebinding of Services

The works mentioned in Section 3.1.3.1 perform a static selection and composition of services in
a workflow, which is carried on before the execution of the workflow. In that situation the time
taken to perform the selection and composition may not be a main concern.

However, in dynamic environments the selection and composition process may be triggered
by a failed QoS condition that was detected at runtime (a service that is not available anymore,
or a violated SLO), and a decision or reconfiguration plan may need to be taken in a very short
time. The following approaches execute dynamic rebinding of services, and provide algorithms
that attempt to deliver a near-optimal response during the execution of a workflow composition.

Canfora et al. [CDPEV05, CDPEV08] describe a dynamic runtime approach where replan-
ning can be triggered preventively during the execution of a workflow. In this solution the bind-
ing between the abstract and concrete services is realized by means of a proxy service which
contains the partner link to each concrete service. The proxy service is in charge of retriev-
ing the set of candidate services and choosing the one that best contributes to fulfill the QoS
requirements of the composition. This approach gives more control to the workflow engine.

Mabrouk et al. [MBK+09] presents a solution for efficient QoS-aware composition for dy-
namic service environments, in the context of the SemEUsE project 5. As in previous works, the
approach uses a guided heuristic based on K-means clustering algorithms to find a set of near-
optimal service compositions that respect the imposed QoS constraints, and maximize a defined
QoS utility function. The approach considers two steps: a local phase performed for each activity
in the composition where clusters of candidate services are selected, and a global phase where
candidates for each activities are composed together to obtain the near-optimal composition.

Alrifai et al. [AR09] proposes a solution that combines global and local optimization tech-
niques. The approach decomposes the QoS global constraints into a set of local constraints that
are used as conservative upper and lower bounds, and this separated problems are solved by lo-
cal service brokers, providing more scalability. However, the greedy approach taken at the local
level may not guarantee that the global QoS constraint be respected. Later approaches [ASR10]
perform a previous filtering of services based on their level of accomplishment to some of the
multiple QoS criteria to have a more appropriate filtering.

3.1.4 Execution

The execution phase is generally highly attached to the planning phase and most of the times
is completely part of it. In our work we envision that the planning phase is a separate process
from the actual execution of the plan, so to allow the generations of plans that are independent
of the technology used for hosting the services. In this section we mention the existing support
for reconfiguration in applications based on services and/or components, and existing adaptation
frameworks.

3.1.4.1 Reconfiguration Support

Reconfiguration of software architectures is a topic that emerged as software architectures be-
came more complex and the need for supporting dynamically evolving architectures came out.

5http://www.semeuse.org
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In fact, the increasing demand for continuously available software services, where downtimes
are highly risky and inconvenient, requires to have architectures that can be safely modified at
runtime without disturbing the QoS of the service.

Most of the proposed architectural modeling notations use ADLs that focus in static architec-
tures. Oreizy [Ore96] highlighted the need of having an operational Architecture Modification
Language (AML) and a declarative Architecture Constraint Language (ACL) that should coop-
erate to be able to describe and support architectural reconfigurations, and provide a formal
framework where reconfigurations can be analyzed.

Adaptation requires support for modificating the architecture. Oreizy [OGT+99] identifies
the convenience of relying on an architectural model of the system to drive reconfigurations,
and software connectors to aid in runtime change. A recent survey [OMT08] highlights features
that have been proved convenient in providing dynamic adaptability like clear identification
of adaptation points, introduction of adaptation features into the targeted elements, and late
binding. Most of these recommendations coincide with features provided by component models.

Another important concern targets the safety of reconfiguration actions. When executing
modifications on a composition, these change can potentially render the composition of the ap-
plication in an inconsistent state, f.e., if a consumer has sent a request to a service and this
service is dynamically removed from the composition, the consumer may not receive an answer
and block; or in a more general case, one action of the list may fail by external reasons or violate
some restriction of the environment, in which case the reconfiguration may be incomplete.

FScript/FPath FScript [DLLC09] is a scripting language designed to support navigation and
reliable reconfiguration of architectures based on the Fractal component model. FScript em-
beds the FPath language, which provides a notation to navigate inside and query Fractal-based
architectures.

FPath is a domain-specific language which models a Fractal-based architecture as a directed
labeled graph, where components, interfaces and attributes are modeled as nodes of the graph;
their edges define relationships; and the label of the edges define the type of the relationship,
like client/server bindings, child/parent relationships, and interface and attribute ownership.
The syntax of an FPath expression is inspired in that of the XPath 6 language. Using FPath
expressions it is possible to navigate inside a Fractal-based architecture in a precise way and
query their components.

The FScript language uses FPath expressions to navigate through a Fractal-based appli-
cation, select their components, and manipulate them at the architectural level. FScript also
focuses in providing reliable reconfigurations, which is guaranteed by providing transactional
semantics to the reconfigurations, so that they comply with the standard ACID properties and
do not result in an inconsistent state of the system. FScript is also designed in an extensible
way, so that it may be extended to support any extension to the Fractal model, a fact that we
have used in Section 7.5.1 for the development of the PAGCMScript language.

3.1.4.2 Adaptive architectures

The execution of an adaptation on an application requires support from the running environ-
ment to perform the changes. In a distributed environment like the dynamic, service-based
applications we target, this task brings challenges. Actions must be executed in the appropriate
services, and must be described in a precise way.

SAFRAN SAFRAN (Self-Adaptive Fractal Components) [DL06] is an extension to the Fractal
component model to provide self-adaptation to components via an aspect-oriented approach.
SAFRAN components include a controller called adaptation-controller which defines an interface
that allows to attach or detach adaptation policies to the component. A component with such

6http://www.w3.org/TR/xpath/
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controllers turns into an adaptable component. An adaptation policy in the context of SAFRAN
is a set of ECA rules. This, rules described in the form: "when [event] if [condition] do [action]".

In SAFRAN, the aspect-orientation is realized as follows: a base program corresponds to
the Fractal component; point-cuts correspond to notifications of events, because this is the mo-
ment where an evaluation is performed (and the control is taken off the main program); advices
correspond to architectural reconfigurations expressed as actions; and the aspect implementa-
tion corresponds to the adaptation policies that maybe dynamically attached or detached via the
adaptation-controller. SAFRAN provides a dynamic aspect-oriented approach where aspects can
be dynamically weaved or unweaved from the base program.

SAFRAN may detect internal events related to the execution points in the base program,
obtained by instrumenting the Fractal controllers, like the start or stop of a component, or the
reception of a message; or external events related to the application context, and which are
detected by using the WildCAT system [DL05]. Finally, conditions in the adaptation policies are
represented as FPath expressions, and actions are describe using FScript [DLLC09].

SAFRAN uses a model based on a Fractal extension to provide adaptation, which is similar to
our approach. By using a dynamic aspect-oriented approach, SAFRAN separates the component
functional execution from the adaptive behaviour which can be dynamically added or removed
from the component. Our approach also allows to dynamically attach or remove adaptive actions,
but we rely on a component approach to incorporate other aspects from the control loop, for
example separating the analysis of conditions and the set of events to detect, that we believe
provide an even more clear separation of concerns, and allows more complex implementations.

Frascati FraSCAti [SMF+09] is a platform for supporting SCA-based applications. FraSCAti
is an implementation of the SCA specification and is based on the Fractal component model.
FraSCAti extends the SCA specification to allow dynamic introspection and reconfiguration of
SCA applications. FraSCAti exploits the SCA Policy Framework specification to associate non-
functional services to components. Non-functional services are implemented as regular SCA
components and are attached to FraSCAti component via interception of requests.

FraSCAti has been used as support in frameworks that implement closed adaptation loops
[RRS+10]. Being based in Fractal components, reconfiguration capabilities are naturally ex-
pressed using FScript/FPath, though other languages could be used thanks to the component-
based approach.

iPOJO iPOJO [EH07, EHL07] is a service-oriented component runtime, that runs POJO appli-
cations on top of OSGi. The approach of iPOJO consists in wrapping POJO, non service-oriented
applications that implements a specific business logic, with handlers that provide the service-
related functionality like discovery, binding, lifecycle, and provisioning.

iPOJO uses offline byte-code injection to add the required handlers to a regular POJO and
transform it into an OSGi bundle that can be dynamically deployed. iPOJO can handle dynamic
adaptation and reconfigurations of the composition and the lifecycle of the application, by man-
aging the fields values and bindings, due to the injected bytecode. However the composition
of the handlers cannot be modified at runtime, unless a copy of the service with the modified
handlers injected be provided and replaced.

GrADS The GrADS (Grid Application Development Software) framework [BCC+01] aims to
develop adaptive applications for Grid environments. Adaptivity is implemented inside the mid-
dleware. A common application built using the GrADS library is compiled and converted into a
configurable object program, which can be managed by the GrADS middleware by mapping them
to appropriate Grid resources, and dynamically adapt them at runtime according to previously
defined performance contracts.

Being specifically developed for grid environments, actions mainly include rescheduling and
migration of applications. In this case, the adaptation control loop is tightly coupled to the run-
time environments, with the intention to separate it from the functional code design. However,
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both the adaptation control loop, or the criteria to trigger adaptations cannot be modified at
runtime.

3.2 Frameworks and Tools

There is an extensive set of frameworks and tools that have been proposed, from the industrial
and from the academic world, which address partially the phases involved in the control loop
that we aim to integrate. This section presents a subset of them that we have identified as the
most representative, along with their main features.

3.2.1 Frameworks for Monitoring and SLA analysis

As mentioned through sections 3.1.1 and 3.1.2, tools for SLA Analysis in service-based appli-
cations require a monitoring infrastructure to provide the data needed to perform the analysis.
In some cases, this monitoring infrastructure is assumed to exist at the moment of defining the
SLA, but in several occasions the monitoring infrastructure is defined along with the SLA, as
they are a natural complement.

The following works focus on integrated approaches for both Monitoring and SLA Analysis
in component or service-based applications.

3.2.1.1 WildCat

WildCat7 [DL05] is a generic monitoring framework for building context-aware applications.
WildCat uses event detection to capture information from the environment, and provides a
toolkit to define custom sensors. The events collected are processed through the Esper Complex
Event Processing engine [Esp]. WidlCat uses EQL (Esper Query Language) queries to detect
complex conditions from several distributed sensors arranged in a hierarchical organization.

WildCat defines a context as a tree structure, where attributes are the leaves of the tree and
contain values. Values can be static values, active probes (associated to operating system values,
or custom sensors), or query attributes computed from complex EQL expressions. Intermediate
nodes are called resources and contains other resources and attributes. An example WildCat
hierarchy is shown in Figure 3.4.
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Figure 3.4: Example WildCat hierarchy, along with examples for addressing attributes.

WildCat has been used for implementing context-aware applications due to its generic ap-
proach for defining custom sensors [MLBH+09]. The hierarchical organization allows to aggre-
gate and propagate monitored information in a scalable way. The CEP engine allows to detect

7http://wildcat.ow2.org/
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complex conditions that, in our case, can be mapped to SLOs, and can be used as an implemen-
tation in our framework for the monitoring and analysis phases. Both the monitoring and the
analysis in WildCat are, however, tightly integrated which may pose difficulties if only one of
them needs to be modified.

3.2.1.2 Kieker

Kieker [vHRH+09] is an object-based framework for monitoring the runtime behaviour of soft-
ware services. Kieker provides a set of basic tools to add custom monitoring artifacts which, by
implementing a given interface, can take the role of monitoring or analysis. Kieker is able to
measure the performance of the monitored services and obtain distributed trace data. Kieker
uses an interception mechanism based on aspect-oriented programming, where the code of the
custom monitoring artifacts is woven into the application code.

The flexibility of Kieker is given by the fact that custom monitoring probes can be pro-
grammed and attached in an independent way from the application code. The injection of probes
can be done in two ways: by explicitly annotating the methods of the classes that needs to be
monitored (f.e. using AspectJ); or by intercepting services requests using Spring or Apache CXF
SOAP interceptors to have a less intrusive approach.

The output of the monitoring is generated as text files which describes the monitoring records
obtained. These files can be used as output for the analyzers objects. The analyzer objects
can also be customized according to the kind of analysis required and plugins are provided to
generate graphic results in the form of sequence diagrams, dependency graphs and call trees,
using Graphviz and GNU PlotUtils.

Though Kieker allows to create custom monitoring probes for the monitored services, it does
not allow to add or remove the monitoring probes at runtime, as the scheme can only be used at
compile time or load time, and once the probes are woven into the application code, they cannot
be removed.

3.2.1.3 VRESCo

The Vienna Runtime Environment for Service-Oriented Computation (VRESCo) [MRLD10] is an
SOA runtime environment which provides several features often ignored in SOA environments,
like explicit distributed registries for service discovery [MRP+07]. VRESCo provides a service
metadata model to represent registry information which allows to guide dynamic binding and
service mediation. The core services provided by VRESCo are accessible through SOAP inter-
faces. VRESCo uses a framework called DAIOS [LRD09] to provide dynamic and asynchronous
invocation of services.

VRESCo integrates a QoS Monitor [RPD06] element, which monitors services using aspect-
orientation techniques and low-level TCP analysis. The QoS Monitor uses a client-side approach,
which is very useful in cases that there is no access to implementation details on the server-side.
The QoS Monitor parses the WSDL description of the services and introduces monitoring code
in the automatically generated stubs, so to introduce cutpoints before and after the invocation
methods and obtain the response time from the client side. At the same time, the QoS Monitor
uses a TCP packet sniffer to capture the TCP traffic generated by the invocation and, by de-
tecting handshakes and response transfers, it intends to associate TCP events to method calls,
and measure the latency and execution time on the server side. The QoS model used allows to
measure performance metrics like latency, response time, availability, accuracy and throughput.
Other metrics may be introduced in the model, however this is possible only at design time.

SLA violation detection in VRESCo [MRLD09] uses the information obtained from the QoS
Monitor and an eventing architecture [MRLD08] that relies on the Esper CEP engine [Esp]. SLA
obligations are defined using objects that include attributes like: property to monitor, period of
validity of the obligation, operation to which the obligation is applied to, comparison operator,
threshold, and notification mechanism. More complex obligations with additional attributes
can also be used. The SLA obligations are attached to the service via the Publish Interface of
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VRESCo, and transformed to EPL (Esper Processing Language) subscriptions. The subscrip-
tions are processed by the event engine, which establishes a match between subscriptions and
events. After this step, the event engine notifies the subscribes whenever such a match occurs
using, for example, E-Mail or WS-Eventing.

The PREvent framework is an extension to VRESCo [LWR+10, LMRD10] aimed to detect an
SLA violation before it happens, and modify the service composition in order to avoid the SLA
violation. The approach defines checkpoints as points in the execution where a prediction can
be performed. Checkpoints are manually described using an XML-based language that includes
the class that implements the predictor logic, the location of the checkpoint with respect to the
activities of the service, and a list of facts (real metrics) and estimators (estimated metrics) to
consider. Prediction is based on monitored QoS data and historical metrics. These data are used
to train a prediction model, which can be a regression classifier (f.e. the WEKA 8 machine learn-
ing toolkit). The accuracy of the prediction is estimated from the historical data. The predictor
compares the predicted SLO value with a given adaptation threshold and trigger a Composi-
tion Adaptor in case it determines that a violation is likely to occur. The Composition Adaptor
chooses, from a set of predefined adaptation actions described in an XML-based language, the
subset of actions that must be applied according to a strategy. Two strategies are available: a
safe strategy which finds the composition that is most likely to prevent a violation (the predicted
value is as far as possible from the threshold), or a minimal strategy which finds the composition
that provides a predicted value as close as possible to the threshold and avoiding the violation.

VRESCo is one of the few environments that explicitly include preventive detection of SLA vi-
olations. Monitoring relies generally on interception of requests, as the environment has control
over all the interactions. Adaptation is limited to predefined strategies. Although it is possi-
ble to include additional strategies it does not seem to take advantage or interact with current
monitored information. Flexibility is restricted to design-time decisions.

3.2.1.4 PADRES

PADRES [JCL+10] is a middleware for distributed publish/subscribe event management, imple-
mented in Java. PADRES provides content-based routing by implementing an overlay of pub-
lish/subscribe brokers, where consumers declare their interests as subscriptions, and providers
publish their content. PADRES has been applied in the development of an SOA runtime envi-
ronment by serving as a distributed ESB that provides routing and mediation between loosely
coupled consumers and providers.

The eQoSystem project aims to simplify the development and management of business pro-
cesses automating tasks like monitoring, deployment and resource provisioning. In this context,
PADRES has been integrated with SLA concerns through the development cycle, from the busi-
ness modeling steps into a machine-understandable form. SLA rules are expressed using an SLA
language that extends WSLA, where complex SLOs can be defined by composing pre-existing
simpler SLOs.

From the business model and the defined SLA rules, the individual SLOs are associated to
metrics which can also be compositions of simpler metrics. Individual metrics are associated
to events that must be generated at runtime. The monitoring is realized by subscribing to the
appropriate events through PADRES. This way, subscriptions are only enacted for the metrics
associated to the required SLOs. Actions can be associated to metrics as Event Handlers, and
Action Handlers can be associated to SLOs to take customized actions upon a violation event.
The SLA is finally seen as a set of SLOs and Action Handlers [CMJ+08].

From the description of the SLOs and metrics, a monitoring client is automatically generated
for each metric, SLO and action handler, which registers to the appropriate events through
PADRES. The conditions under which the SLO rules can be applied are indicated using objects
called scopes.

8http://www.cs.waikato.ac.nz/ml/weka/
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The eQoSystem/PADRES approach is highly attached to a business process description and
relies on a business process engine like BPEL to drive the execution of the business process and
associate events, metrics and actions to the execution. eQoSystem allows to define new metrics
and rules that can be applied at deployment time, and adaptation actions can be attached to
them to provide runtime adaptability [MJC+09]. All the adaptation features, however, must
be specified at deployment time and cannot be modified at runtime. The adaptation actions,
also, cannot interact with the monitored information at the level of individual services, which
impends to take more pertinent actions. Further work aims to apply this approach to manage
business processes in Cloud environments [MJ10] by using a distributed set of BPEL engines,
and mapping the BPEL process to events in PADRES in a distributed orchestration architecture
called NIÑOS [LMJ10].

3.2.1.5 SERVME

The SLA-based SERViceable Metacomputing Environment (SERVME) [RS09] is an environ-
ment for federated metacomputing that aims at matching providers based on QoS requirements,
and performing autonomic provisioning and deprovisioning of services according to dynamic
needs.

SERVME presents an object-based SLA model designed to meet the requirements of meta-
computing environments. SERVME defines a QosContext object that represents the QoS re-
quirements of the requester and includes functional requirements, system requirements (for
resource matching purposes), organizational requirements, metrics, and SLA parameters rep-
resenting the ranges of accepted values expected from the provider. During the negotiation, an
object called SlaContext represents the offer from the provider and includes the SLA parameters
offered, the QosContext that the provider intends to satisfy with this offer, the access point to the
service that guarantees the SLA compliance, and a state of the negotiation. This model allows
to drive an SLA negotiation process and perform matching of requirements.

At runtime, the compliance to the SLA is monitored by an SLA Monitor that is built based
on the negotiated SLA, and a QoS Monitor able to monitor the QoS parameters of the provider.
SERVME also includes an On-demand Provisioner, able to obtain service providers via the Rio
Provisioner 9.

The focus of SERVME is to provide runtime compliance to the defined QoS requirements on
the provided services. Adaptation is provided through the autonomic provisioning and deprovi-
sioning of services. Monitored data about the services is assumed to be available at runtime.

3.2.1.6 SLAM4M

The SLA@SOI project aims to provide an SLA-aware infrastructure to service oriented applica-
tions. One of the important topics that have been identified is the support for dynamic evolving
SLAs and the consequences they have on the SLA monitoring infrastructure. The authors define
the issue of SLA Monitorability as the capability to monitor a required set of SLA terms. The
authors separate the SLA monitoring task in two interacting layers: the SLA Management layer
that includes the mechanisms for performing SLA Monitorability checks and to dynamically
setup a monitoring infrastructure to enable the SLA monitoring; and the Service Management
layer that includes the event captors and monitors that perform the SLA checks.

The authors present the SLAM4M (SLA Management for Monitoring) framework [CS10,
CS09b], which belongs to the SLA Management layer and performs a coordination process of
available events and SLA monitors. The architecture is event-based, and considers a set of event
captors associated to the composed services, and a set of monitors which are capable of receiving
events and SLA rules, and performs SLA checks using that input, and detecting violations.

The SLA rules are introduced to the framework using the WS-Agreement language that has
been extended to specify SLA Guarantee Terms. The event captors and monitors expose their

9http://www.rio-project.org/
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monitoring capabilities, i.e., the set of events they produce and their SLA checking capability,
using an XML-based language defined for this purpose. SLAM4M uses this information to check
if the set of required SLA terms is monitorable using the available capabilities (event captors
and monitors) and associates them as required, delegating the SLA checks to the available SLA
monitors.

The authors assume the existence of a predefined interface that is exposed by event captors
and SLA monitors in order to communicate their monitoring capabilities, to connect event pro-
ducers with event-receiving SLA monitors through an event bus, and submitting SLA terms to
the SLA monitors. Using this interface it is possible to perform the reasoning and associate the
appropriate event sources and receivers.

The approach can be applied in a hierarchical way [CS09a, CS09b], in order to analyze SLAs
at different levels of the composition of a service based system. This way, only the events that
are useful for the checking of each SLA term are stored in a database.

The main advantages of this work are the separation of tasks between the SLA checking and
the available monitoring sources. We extend the idea of separating these concerns, including
in the layer related to the monitoring tasks the possibility of having specialized event captors
for each different monitoring interface available, possibly including the interfaces defined by
SLAM4M.

3.2.1.7 DIPAS

DIPAS [TBNF09] is a distributed performance analysis service for web service-based workflows
in grids, developed for the K-WfGrid system. Interfaces are based on WSRF to allow other
services and clients to use the perfomance analysis features and facilitate integration. Com-
municated monitoring data is transmitted using XML-based representations. The performance
evaluation is carried out by a component called DIPAS Gateway that analyzes the monitoring
data, workflow representation and analysis requests from clients. The DIPAS Gateways publish
their information into a registry, so that clients can locate them.

The DIPAS Gateways obtain the monitored information by connecting to grid monitoring
services like GEMINI (Grid Monitoring and Instrumentation Service) from K-WfGrid. Although
they can connect to multiple GEMINI services, the analysis is performed in a single DIPAS
Gateway. The available information computed through DIPAS includes execution tracing, per-
formance overhead analysis, and detection of specified performance problems. DIPAS defines a
Workflow Analysis Request Language (WARL), which is used to specify analysis requests, and
allows to define constraints (WARLConstraint), performance metrics to be analyzed (WARLAn-
alyze) and performance conditions (WARLPerfProblemSpecs). These elements are sent to the
DIPAS Gateway and can be used to specify performance conditions to be checked during the
workflow execution. There is no action associated to these conditions, as the objective is to spec-
ify what the client wants to be displayed.

DIPAS is an example of a broker based architecture for monitoring and analysis, where the
DIPAS Gateways interact with the monitoring tools and make the monitored information avail-
able through a registry. DIPAS is also very interesting for the distributed analysis, in which
the tracking of interactions between services is performed through all the DIPAS Gateways in-
volved.

The final purpose of DIPAS is oriented to analyse workflow interactions in service grid envi-
ronments, so the available information and analysis tools are specific for these infrastructures.
It is not possible to add new monitoring concerns at runtime. However it is possible to specify
runtime conditions to be analyzed through the external DIPAS Client.

3.2.1.8 GT4

The most recent version of the Globus Toolkit, version 4 (GT4), [Fos06] is an evolution of the
Globus Toolkit oriented to the development of services and applications over high performance
environments. The architecture of GT4 promotes interoperability by defining interfaces based
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on Web Services standards, a major change respect to previous versions. In GT4, most function-
alities are provided as services. A set of infrastructure services allow to manage computational
resources, addressing execution management, data access and movement, replica management,
credential management, monitoring and discovery.

GT4 includes an aggregator framework, a software framework that can be used to build ser-
vices that collect and aggregate data from other services. The monitoring solution of GT4, called
Monitoring and Discovery System (MDS4) [SPM+06, SRP+06] is a realization of the aggregator
framework, but other collecting and aggregating service can be built.

MDS4 implements the Web Services Resource Framework (WSRF) [OASd] and Web Service
Notification (WS-Notifcation) specifications to provide query and subscription interfaces to de-
tailed resource data. WSRF is a collection of specifications that aims to model and access stateful
resources using Web Services (which are, by definition, stateless). WS-Notification is a specifi-
cation to push information to other web services, enabling event-driven programming.

In MDS4, the main element is an Index Service that collects information about resources from
several information providers, or from other Index Services. Information providers are already
defined for common interfaces from existing monitoring tools like Nagios, Ganglia and Hawkeye,
among others, and custom ones may be defined. An Index Service, built into each GT4 container,
collects data using WSRF Resource Properties and WS-Notification subscription/notification in-
terfaces. Index Services can be arranged forming hierarchies (or other topologies), and become
aware of each other by maintaining soft-state registration between themselves. This way, the set
of Index Services form an effective distributed registry of monitoring information, that is shared
as WSRF resource properties. The collected information can be queried and accessed through
separate browser-based interfaces, command line tools, or Web Service interfaces provided by
GT4, like WebMDS. An example of a hierarchical deployment of MDS4 Index Services is shown
in Figure 3.5.
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Figure 3.5: A hierarchy of Index Services in MDS4. Globus services act as information providers
for monitoring information; among them, the GRAM service is able to obtain monitoring infor-
mation from external sources. By contacting the Index Services, monitoring clients like WebMDS
can obtain information about a set of resources

Overall, MDS4 provides a flexible monitoring framework that can use complex configurations
and interoperate with existing tools. The information that can be obtained is mostly related to
grid resources, instead of properties of the services. However, the flexibility provided by the
WSRF Resource Properties and the possibility to add custom information providers does not
forbid to propagate service related information given an appropriate provider and use MDS4 as
efficient provider of monitoring data.

3.2.1.9 RESERVOIR

RESERVOIR (Resources and Services Virtualization without Barriers) [RBL+09] is a EU-FP7
project that aims to provide an open architecture for federated cloud computing. The RESER-
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VOIR framework focus on IaaS clouds and follows a service-oriented approach by addressing the
needs of Service Providers that want to offer Service applications, and Infrastructure Providers
who makes computational resources available in the form of a Cloud computing infrastructure.

The RESERVOIR architecture [CEGM+10] builds upon available virtualisation products and
hypervisors, which are managers provided by concrete virtualisation infrastructures (f.e. Xen,
VMWare), and that can execute actions on the infrastructure like replication and migration of
virtual machines. RESERVOIR considers three layers to manage virtualised environments. The
Virtual Execution Environment Host (VEEH), at the lowest level, uses plugins to communicate
with hypervisors of concrete virtualised infrastructures. The Virtual Execution Environment
Manager (VEEM) controls the activation/deactivation, migration and replication of the virtu-
alised resources by communicating in an uniform way with multiple VEEHs, and can interact
with the VEEM from other cloud providers. The Service Manager is the highest layer and com-
municates with the Service Provider to ensure that the requirements are enforced in the infras-
tructure. A summary description of RESERVOIR architecture is shown in Figure 3.6.

Figure 3.6: RESERVOIR Architecture [CEGM+10]. VEEMs and VEEHs can manage the virtu-
alised resources according to the rules in the manifest language.

The requirements that the service provider imposes on the infrastructure are specified us-
ing a manifest language which is a form of an SLA specification, and is inspired by the model
of SLAng [SLE04] mentioned in 3.1.2.1. The manifest language allows to specify the KPI (Key
Performance Indicators) from the service provider; the association of the requirements to moni-
toring parameters; and a set of elasticity rules that allows to define adaptation actions based on
an Event-Condition-Action description.

The RESERVOIR architecture shows an integrated approach for monitoring and SLA de-
scription, while keeping modular separated concerns. The main advantage is the separation
between the infrastructure related deployment constraints, from the service related constraints.
This separation allows to adapt one or the other according to the environmental needs. However,
by relating QoS requirements to infrastructure concerns, the resource provisioning can be better
guided and allows the providers to optimize resource usage while keeping a certain QoS at the
level of the delivered service.

3.2.2 Frameworks that provide generic autonomic loops

This section present works that attempt to implement autonomic behaviour through autonomic
control loops. Initial approaches comprised a restricted set of rules and the different phases of
the autonomic control loop were usually tightly coupled. Along with the need for more flexible
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architectures, these constraints have been softened. The tools presented here attempt to provide
autonomic loops for general purpose applications.

3.2.2.1 Autopilot

The Autopilot [RVSR98, RSR01] framework attempts to allow a distributed application to dy-
namically adapt to an evolving environment. Autopilot defines a set of elements that take a
specific role in the adaptation process: sensors, actuators, clients, and distributed name servers.
In the Autopilot model, an application is instrumented with sensors that read values from the
application and that compute other values from them; and with actuators that are able to mod-
ify the value of a parameter. Both sensors and actuators register themselves with an Autopilot
manager. A set of Autopilot managers work as distributed name servers. Autopilot clients are
able to connect to these distributed name servers and find sensors and actuators. Decision mak-
ing is performed through predefined decision tables: when a predefined condition is met from
the values read by the set of sensors, a set of parameter modifications is executed through the
actuators.

Autopilot puts a great deal of emphasis on the separation of tasks of each entity, and in the
heterogeneity of the targeted application. Autopilot does not consider the addition or removal
of sensors and actuators at runtime, and it allows only simple predefined decisions and basic
actions as the modification of parameters. Nevertheless, this approach is one of the first to
consider a clear separation of tasks for implementing a complete adaptive control loop with an
implementation-independent approach.

3.2.2.2 Rainbow

The Rainbow framework [GCH+04] attempts to provide a complete control loop for self-adaptation
by using an architecture-based approach. Rainbow uses an abstract architectural model that
represents the architecture of the application as a graph where nodes are called components
and represent elements of the system (clients, servers, storage elements, interfaces, etc.), and
the arcs are called connectors that represent interactions between the components. Components
may be hierarchical, and may be annotated with required properties like QoS.

The model is maintained by a model manager that connects to gauges that collect monitoring
information to update the model. A constraint evaluator element checks the model periodically
and triggers adaptations if a constraint violation is detected. An adaptation engine determines
the appropriate actions and execute the adaptation through an adaptation executor element. A
translation infrastructure layer maps the gauges used by the model manager, and the actions
required by the adaptation executor are mapped to concrete probes and effectors at the target
system level. The elements of the Rainbow framework completing the control loop are shown in
figure 3.7.

Rainbow shares some characteristics with the framework we propose in this thesis. The el-
ements of Rainbow are directly mappable to the steps of the MAPE autonomic control loop we
also target. Namely, model manager, constraint evaluator, adaptation engine and adaption ex-
ecutor correspond to the Monitor, Analyze, Plan and Execute steps respectively. By defining the
elements in a language independent way, Rainbow allows to provide self-adaptation to different
kinds of systems. By relying on the translation layer to connect to the concrete API or system
elements that are required, the implementation of the autonomic control loop is kept separated
from the target system.

However, Rainbow is oriented to provide self-adaption via an architectural model built and
updated from the collection of monitored data, integrating all the phase of the autonomic control
loop. In our vision, we design the autonomic loop following a component-oriented approach
where any monitoring and adapting strategy may be implemented. Moreover, we attempt to
attach the autonomic control loop to a set of loosely coupled services which may be available from
different providers, whereas Rainbow uses a centralized autonomic control loop that controls all
the architectural elements of the target system, which facilitate some design decisions. As a
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Figure 3.7: The Rainbow framework [GCH+04] uses a model to monitor, analyze and plan adap-
tations. The translation infrastructure keeps the separation between the model and the concrete
probes and effectors.

final differentiation, Rainbow does not support at runtime evolution of constraints, monitoring
requirements, or adaptation strategies.

3.2.2.3 StarMX

StarMX [AST09] is an open source generic configurable framework for building self-managed
Java-based applications using JMX. StarMX allows to create closed autonomic loops using vari-
ous mechanisms like action policies.

The framework defines a set of entities called processes, which implement the adaptive be-
haviour and can include Java code or use a policy language that defines behaviours in the style
condition/action. Processes can be bound in execution chains, which are associated to activation
mechanisms. Upon calling an activation mechanism, all the processes in the associated execu-
tion chain are executed sequentially. Processes talk to anchor objects to perform their actions.
Anchor objects are sensor, effectors, or other helper objects, and mostly MBeans are used in the
implementation.

The communication with the framework is performed through a set of services that allow
to query the anchor objects, initiate the activation mechanisms using timers or events, define
the scope of the actions, data sharing among processes, and obtain logging information, among
others. At startup, the framework uses a configuration file to deploy the processes, create the
execution chains, and define the activation mechanisms on them.

Though it is oriented to Java-based applications, this autonomic approach attempts to pro-
vide autonomicity by following the MAPE control loop and separating the tasks of activation
(in activation mechanisms), composable execution of actions (through processes and execution
chains), and collection of data and execution (through MBeans that can work as sensors and
effectors). The management actions are defined at startup time through a configuration file
that cannot be modified at runtime, though it can be extended to interact with other autonomic
environments or policies through configuration of MBeans.

3.2.2.4 Entropy

Entropy [HLM+09] is a resource manager for homogeneous clusters. Entropy implements an
explicit control loop to analyze the current allocation of Virtual Machines to nodes, and performs
dynamic consolidation to reduce the number of used nodes, and reconfiguration plans using
constraint programming.

Entropy implements a reconfiguration loop that is deployed in a node dedicated to the cluster
resource management. In each one of the managed nodes there is a sensor with privileges (f.e.
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running in Xen’s Domain-0), and the resource manager node contains the Entropy Reconfigu-
ration Engine. The sensors collect information about the usage of their corresponding VM and
informs the Reconfiguration Engine of the state of the VM changes. The Reconfiguration En-
gine collects the state of the VMs and tries to compute a reconfiguration plan to consolidate the
active VMs into an optimal configuration, and devises a plan to achieve this configuration min-
imizing the required migrations. When the plan is obtained the Reconfiguration Engine sends
the corresponding orders to the VM Sensor which can also act as actuators and trigger migration
requests.

The interest of describing Entropy is that it shows an application of an autonomic control loop
to resource management. Although it is described for a specific kind of homogeneous clusters
(provided through Xen VMs), Entropy presents an architecture for the control loop that can be
implemented with our approach. In this situation, the sensors acts as collectors and actuators
for executing reconfigurations, while the centralized reconfiguration engine involves both the
analysis (when to act) and the planning step. A component-based approach, as the one we
propose, applied to the Entropy Reconfiguration Engine would allow to experiment with different
consolidation strategies that could be, f.e., performance oriented or cost-saving oriented. Finally,
the strategies used by Entropy are not dynamically modifiable at runtime, though it is not a
main concern in this work.

3.2.2.5 Dynaco

Dynaco [BAP05, BAP06] is a framework oriented to design and develop adaptive component-
based applications. Dynaco is described as an assembly of Fractal components that can be spe-
cialized for each application according to specific sub-functionalities: decide, plan and execute.
The framework provides generic interfaces and defines general guidelines for implementing each
functionality. Also, individual components can be dynamically modified fostering self-adaptation
of the adaptation framework itself.

The structure of a Dynaco adaptable component is shown in Figure 3.8. The components that
implement the adaptation activities reside on the membrane of the Fractal component, and are
kept separated from the functional content. An special controller, called modification controller
can be used to access and modify directly to the functional code.

Figure 3.8: Architecture of a Dynaco adaptable component [BAP06].

In our work, we provide a similar decomposition of an autonomic control loop that can be
attached and detached to components at runtime, also including the monitoring components as
an integral part of the control loop. In addition, we exploit the composability of each autonomic
control loop step allowing to have multiple sensors, rules, or adaptation strategies, and composed
metrics and actions. In that sense, our work extends the approach taken in Dynaco further
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promoting composability, and supporting a service-oriented approach both for the application
functional code, and as support for implementing the autonomic management code.

Using Dynaco, other frameworks have been devised. Notably, QU4DS (Quality Assurance for
Distributed Services) is a generic framework that covers the SLA life-cycle, including support
for SLA description, negotiation, mapping to infrastructure resources, and assurance of SLA
conditions.

3.2.3 Frameworks that provide autonomic loops for services

This section presents works that attempt to implement autonomic behaviour in service-based
applications, or that follow a service-oriented approach for composition. The main contribution
of these tools is in the separation of the managment layer, this is, the one that provides the auto-
nomic behaviour, from the functional work of the targetted application, and in the introduction
of SLA concerns in the definition of goals for guiding autonomicity.

3.2.3.1 Cappucino

CAPPUCINO [RRS+10] is a platform for executing web services in ubiquitous environments,
with support for context-aware adaptation of services. CAPPUCINO uses SCA to specify both the
applications and their associated autonomic control loops, where each control loop is in charge of
monitoring the execution of one SCA application and of adapting it with regards to the evolutions
of the environment.

CAPPUCINO has been implemented using FraSCAti as the SCA runtime support, and us-
ing an FScript engine embedded as an SCA component to provide reconfiguration capabilities.
Context-awareness is provided by COSMOS [CRS07], a framework for processing and represent-
ing context information, and SPACES, a mediator tool for distributing this context policies using
REST. The autonomic control loop is designed as an SCA application that collects contextual in-
formation from the managed applications. The managed application uses SPACES to connect
the remotely deployed CAPPUCINO elements through SCA RESTful bindings.

Figure 3.9: CAPPUCINO elements [RRS+10]. The control loop is hosted in the adaptation
server. SPACES components are used to obtain monitoring information from the remote ap-
plications.
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Context information collectors and reconfiguration engines are deployed as SCA components
in each distributed location. SPACES context collectors works as agents sending their context
information to a CAPPUCINO Adaptation Runtime, another SCA application, where the context
is processed and a Decision Engine, and Reconfiguration Engine components create the recon-
figuration plan and send it to the reconfiguration engines located in each distributed location,
completing the autonomic control loop.

One of the benefits of CAPPUCINO is the explicit depiction of the autonomic control loop sep-
arated in SCA components. Being oriented to ubiquitous environments, one control loop is im-
plemented for all the application, managed in a central Adaptation Runtime, where the context
information is received, and actions are planned and sent to the respective distributed agents.
Our proposition takes a similar component-oriented separation of the autonomic control loop,
where we envision flexible elements in each step of the control loop, and allows to implement
local control loops for each application component and a general control loop for the complete
composition.

3.2.3.2 Ceylon

Ceylon [MDL10] is a service-oriented framework for integrating autonomic services to build
more complex applications that implement autonomic management. Ceylon considers a set of
components that provide simple tasks related to monitoring and management like: monitor-
ing a single parameter, detect a certain condition, planning a specific solution, or modifying a
managed resource, f.e. replacing a storage unit for another. These components provide their
functionality in a service-oriented approach and are available from a repository. The Ceylon
framework aims to select those components and compose them at runtime in a loosely-coupled
way, using topic-based asynchronous communication, in order to form the complex autonomic
management application. Evolving conditions and requirements are supported as the composed
management application can also be modified at runtime.

Ceylon considers a Task Manager layer that administers the management components pro-
viding them a common communication channel. Another layer, the Strategy Manager, supervises
and reconfigures the components through the Task Manager. The Strategy Manager uses a run-
time model of the autonomic management process that includes the management strategies and
their associated tasks along with the management components that must be activated.

Management activities are encapsulated in Ceylon containers in order to separate the admin-
istration of the management activities from the implementation of the management task itself.
Ceylon containers provide interfaces for specifying goals, event publish/subscription, lifecycle,
human-machine interaction, and configuration.

Ceylon is oriented to construction of applications that perform autonomically. That means,
autonomicity is a main functional objective in the development of the application. In our frame-
work, we aim to provide autonomic QoS-related capabilities to already existing service based
applications. Also, we take benefit of the business-level components intrinsic distribution and
hierarchy to split the implementation of monitoring and management requirements across dif-
ferent levels, and taking autonomic activities near to the targeted services, thus enforcing scal-
ability, which is not so clear to obtain through the Ceylon description.

3.2.3.3 SAFDIS

SAFDIS (Self Adaptation For DIstributed Services) [GDA10, ADG10] is a context-aware frame-
work for self-adaptation of distributed service-oriented applications. SAFDIS also takes the
MAPE autonomic control loop as model, and implements all the phases as services. The focus
of SAFDIS is in the distributed collaboration to create an adaptation plan. The analysis phase
considers a short-term reasoner that can trigger simple, direct strategies, while a long-term rea-
soner can execute complex strategies. SAFDIS considers the utilization of different algorithms
provided as services to obtain the best strategy to reach an objective state. As a result of the
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planning phase, a set of abstract actions are produce, which must be translated in the execution
phase to concrete platform-dependent actions.

SAFDIS collects the context-aware monitoring information from the WildCat engine. SAFDIS
provides migration of services as adaptive actions, which are executed using OSGi. For this
matter, services are remotely deployed and started using OSGi. Whenever a service needs to be
migrated, their state is retrieved, then the service is redeployed on the new destination and the
old state is copied.

The main contributions of SAFDIS related to our work are the separation between abstract
actions generated by the planning phase, from the concrete actions that depend on the targeted
platform, which makes possible to address heterogeneous service platforms; the other interest-
ing concept is the design of an analysis phase that can react at different depth levels, a feature
that is certainly possible within our framework. SAFDIS does not, however, considers the run-
time evolution of the adaptation strategies themselves.

3.3 Comparison

Although the frameworks and tools presented in Section 3.2.2 support most or all of the phases
of the autonomic control loop, few of them allow to modify the composition of the autonomic
behaviour at runtime.

As a synthesis of the frameworks and tools presented, we have categorized the existent works
according to the following features that we consider important for a complete adaptation frame-
work, and illustrate this comparison in Table 3.1.

• Monitoring: the framework or tool considers, as part of itself, a monitoring architecture
that may include probes, sensors, request interceptors, or that can perform subscription to
event sources.

• Analysis: the framework or tool is able to continuously check for conditions using the mon-
itored data, and it can detect or predict deviations from the expect behaviour.

• Planning: the framework or tool is able to decide some action, plan a recomposition, or
choose some strategy to take the service to a certain state.

• Execution: the framework or tool has itself the capability to execute concrete actions to
adapt or modify the target system by means of its own actuators, or it allows to describe
the actions that must be executed on a targeted infrastructure.

• Extensibility: the framework or tool allows to incorporate or design new elements in some
of the phases, in addition to those already provided, by providing a toolkit or API to provide
custom elements.

• Flexibility: the framework or tool can include new elements either statically at design time,
or dynamically at runtime in order to change or adapt the behaviour of the control loop.

• Scope: kind of applications that the framework or tool is applied to, or if it is a generic
approach.

• Communication Type: technology used to transmit information through the control loop.

The support given to each phase varies. In Table 3.1, we utilize ’+’ to indicate that the
support is restricted to a specific type of applications or that it may be constrained to modifying
the interactions between the elements provided by the framework. On the other side, we use
’++’ to indicate that the support of the framework allows to have different implementations or
develop custom elements to accomplish a task.

With respect to extensibility, we use ’+’ to indicate that the custom elements added are re-
stricted to different combinations of the existing elements, and ’++’ to indicate that custom ele-
ments may be introduced.
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In addition, the analyzed works vary not only respect to the support they give for the phases
of the autonomic control loop, but also in the level of coupling between each phase. In our
work, we promote that separating the implementations of each phase helps in creating more
flexible control loops, so we also analyze how modular are the implemented phases. The Table
3.1 includes a closed line enclosing the phases whose support is tightly coupled.

Existing works are usually targeted to a specific kind of environment, or application, and
profit of the respective feature of those domains. The works can be analyzed from several points
of view.

Respect to the support for Monitoring and Analysis, older tools tend to tightly associate the
monitored characteristics to the requirements expressed in SLAs, so that the monitoring frame-
work is built around these requirements. According to their goal, WildCat, Kieker and RESER-
VOIR does not target specifically services, however WildCat and Kieker are generic enough to be
applied in that context too. RESERVOIR, on the other side is a more modern project targeted at
virtualised resources which are, however, used to host services. In fact, RESERVOIR is a more
integrated approach for the service provisioning infrastructure.

The support for planning strategies is low or inexistent, and is mostly limited to execute
predefined modifications. Regarding the flexibility aspect, only WildCat and GT4 were identi-
fied as capable of modifying their monitoring and analysis activities at runtime. Although their
focus is different, both rely on hierarchies where nodes can be connected or disconnected at run-
time. GT4 is, however, part of a complete and scalable environment targeted at heterogeneous
infrastructures, while WildCat is intended as a support for building more complex tools.

Regarding the works that aim to implement the complete adaptation loop, Autopilot is one
of the first to integrate all phases, however all the logic is comprised in its core and hardly
modifiable. Rainbow provided a generic model for separating the managed application from the
control loop with still a rather centralized approach. StarMX and Ceylon share that they intend
to compose an autonomic control loop by composing smaller units that implement specific tasks,
however, as told, Ceylon is oriented to create autonomic applications, while StarMX intends to
provide self-management capabilities to existing Java-based applications. Ceylon provides also
a runtime adaptation of this autonomic composition, while StarMX provides only the technical
support for gluing the management tasks. Cappucino and Entropy can be seen as an applica-
tion of an autonomic architecture for constrained application domains, as ubiquitous services,
and virtualised resources, consequently they do not provide much flexibility for adapting the
autonomic behaviour to other applications.

The most similar in terms of capabilities to our approach are Ceylon and Dynaco. As said be-
fore, Ceylon targets the development of autonomous application instead of providing autonomic
capabilities to existing applications. Dynaco was developed to support adaptable components
computing and is a flexible framework that allows their internal components to be also adapted.
In our work we extend this adaptable approach to a service-based environment allowing multi-
ple elements inside the phases of the autonomic control loop in a coordinated way according to
the adaptation needs of the component.
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3.4 Summary

In this chapter we have presented a set of relevant solutions for tackling the phases of the MAPE
autonomic control loop, first in a separate way, and later presenting solutions that attempt to
integrate them in a coordinated way to provide complete adaptation loops.

There is a vast set of solutions, and the set presented does not intend to be exhaustive.
Nevertheless, it is possible to see that the different approaches must tackle several common
problems like scalability, efficiency, low intrusiveness, extensibility and flexibility.

When targeting service based applications, loosely coupling, dynamicity and autonomic adap-
tation become important matters. The solutions presented tackle these concerns, but usually
lack and integrated approach that considers the different levels of a service-based application.

In the next chapter, we present a background on the current support for integrated support
for adaptation on a service oriented applications, and position our work respect to this state of
the art.
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This chapter presents the details of our proposition in the light of the context and the state
of the art that have been presented in Chapters 2 and 3.

Section 4.1 presents the requirements that we have identified as important for a proper solu-
tion to the problematics that we found in the current solutions, and details the scientific contri-
bution of our proposal. Section 4.2 describe how our solution helps in solving the problematics
presented and how service-based applications can benefit from it. Finally, we summarize in
Section 4.3.

4.1 Requirements and Proposed Solution

After having presented the context in which our contribution develops, and the related state-of-
the-art, we present our scientific contributions with respect to that context. We start by analyz-
ing the current situation, then we point out a list of requirements that we consider that should
be included in a proper solution, and then we describe the scientific contributions of our solution
and how it addresses the presented requirements.

4.1.1 Analysis of Current Situation

Chapter 2 introduced the service-orientation area, characterizing service-based applications as
dynamic, loosely coupled relationships of heterogeneous services. Such applications are subject
to evolution. Evolution may be triggered by different reasons, and may happen at different levels
in a service-based application:

• Infrastructure level. An increase in network latency, a disruption in availability, a per-
formance decrease of a service, may require to change the utilization of computational
resources by, f.e., moving services to other supporting infrastructures, or increasing the
number of resources used in the current infrastructure.

• Composition level. A modification in a composition, f.e., by changing a binding, may require
an adjustment in other parts of the composition, as the new binding may influence the
overall QoS of the composition.
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• Management level. A modification in the parameters of an SLA, or the introduction or
modification of new SLOs may require to modify parts of the application to comply with
the new conditions.

All these evolutions may happen, often in ways that cannot be foreseen when designing the
application, f.e., due to the introduction of new requirements once the service-based application
is running, or by unexpected runtime conditions, a possibility that is increased by the fact that
not all the services are usually under the control of a single entity.

Moreover, these sources of evolutions are not independent. For example, a composition may
have some services deployed in an external infrastructure. If that infrastructure is suddenly
unavailable then the services must be redeployed in another infrastructure. The new infras-
tructure may have another characteristics, for example, a higher cost, and then the total cost
of the composition changes. If an SLO has a restriction about the cost of the composition, then
the composition may need to be reconfigured, for example, switching other services for some al-
ternative cheaper versions. In any case, a modification in some part of the service composition,
may trigger additional changes in other levels.

To appropriately support these evolutions, it is necessary to efficiently perform monitoring
and management tasks over the services, and ensure that their runtime behaviour complies
with their contractually defined QoS requirements. However, the monitoring and management
of a service-based application is not a simple task, as it crosscuts all the levels of an SOA, as
mentioned in Section 2.1.2. Consequently, the dynamic evolutions that we have mentioned also
have consequences in the execution of the transversal monitoring and management tasks:

• Infrastructure level. If new resources for hosting services are added, these resources need
to be monitored. However, different providers may offer different technologies and limited
capabilities to do monitoring and management on them.

• Composition level. A modification in the composition of a service-based application must be
considered in the monitoring and management of the complete composition, in particular
in the way to collect and compute the required information, and in the possible targets for
adaptive actions.

• Management level. The introduction of new SLOs or the modification of existing ones may
require to collect information that was not being collected before. At the same time, the
introduction or removal of services may impact the place where an adaptive action may be
taken.

The situation is thus, an evolving environment for services where changes can occur at different
levels, and the services need to adapt to them. As most of this changes can occur at unpredictable
moments and comprise unforeseen conditions, autonomicity seems a promising approach to ad-
dress these adaptation needs.

The vision we aim to contribute to its concretisation is thus: having service-based applica-
tions that can be adapted, preferably autonomously, to a constantly evolving world, with none or
minimal disruption of their functionality and complying with a set of required QoS characteris-
tics, considering that these QoS characteristics can also evolve.

4.1.2 Requirements

We mentioned in Section 2.1.4 a set of challenges in service-orientation that have the objective
of providing adaptability at several levels. Section 2.5 presented the topic of autonomic com-
puting as a discipline that can help in the development of self-adaptable services by means of
autonomic control loops. Section 3.2 presented some works that have advanced the research in
the attachment of autonomic control loops in complex systems.

We have identified the following aspects that we consider key for a monitoring and manage-
ment system that can make the above vision effective:
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• Extensibility. Given that the monitoring and management conditions are manifold and
highly dependent on the specific characteristics of the service-based application, the mon-
itoring and management system must allow the definition of custom elements, instead of
(or in addition to) fixed predefined libraries.

• Flexibility. Given that not all the monitoring and management requirements, nor the
conditions under which the service-based application will execute can be completely fore-
seen at design time, the monitoring and management system must allow the introduction
of new elements at runtime, possibly modifying the monitoring and management system
itself.

• Heterogeneity/openness. As the landscape of services and providers is technologically
heterogeneous, the monitoring and management system must be able to incorporate infor-
mation from and execute actions on services with different monitoring and management
capabilities and/or access protocols.

• Efficiency. In a context where the actual services that form part of a composition may be
highly geographically distributed, possibly including many of them, and where, neverthe-
less short response times are usually expected, the collection of information and decision
making must be done in a timely manner.

• Autonomicity. Given the complex nature of service-based applications, the monitoring
and management system must be able to take autonomic decisions as much as possible in
order to minimize the requirement of human intervention.

In Section 3.3 we identified that most of the approaches presented in Section 3.2.2, though
providing autonomicity to applications, address most of the time specific kinds of applications,
and few of them provide the extensibility and flexibility needs over the autonomic control loop
itself.

The situation is, thus, an extensive set of tools and frameworks for monitoring and manage-
ment, sometimes in an autonomic manner, that address specific technologies, with a general lack
of uniformity; or that cover only part of the levels required in an SOA; and with rather strong
support for triggering adaptations in the target applications, but with few space for adapting
the monitoring and management behaviour itself.

4.1.3 Solution and Scientific Contribution

Said that, we state as our research objective to improve the adaptability feature implemen-
tation in service-based applications by providing a generic framework that

• gives a common and efficient means to monitor and manage service-based applications,

• allowing to introduce autonomic behaviour at runtime and

• allowing to modify their adaptability features if needed, in order to support evolving man-
agement requirements.

In order to provide such a solution, we must target the requirements previously stated. We
aim to integrate the different steps of an autonomic control loop in a service-based application,
in order to provide autonomic behaviour to services and to be able to take timely adaptation
decisions. In order to tackle the complexity of designing such a framework, we choose to adopt
a component-based design to present our proposition. Section 2.4 presented the SCA model
where CBSE properties are used to capture the composability, encapsulation and reuse needs
of service-based applications, while also providing abstraction from specific implementing tech-
nologies. We believe that a component-based approach like that used in the SCA design model
can appropriately model the introduction of autonomic support in service-based applications.

However, as mentioned before, the SCA approach does not include concerns about runtime
evolution, as SCA is a design-oriented specification. We need, thus, a proper implementation
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support capable of dynamic evolution. We support our solution with an implementation over
the GCM/ProActive middleware, which provides support for dynamic reconfigurations, and is
capable of handling large scale deployment concerns, allowing to take on the monitoring and
management concerns at all the levels of an SOA.

We present our solution as a generic component-based framework that allows to intro-
duce evolvable monitoring and management features into component-based service-
oriented applications, and which can be used to support efficient and autonomic be-
haviours.

Our proposition separates the MAPE autonomic control loop in its different phases, and mod-
els them as separate components that are attached as close as possible to the target services
they aim to manage. Consciously following the MAPE control loop implied architecture allows
us to support autonomicity in the adaptation if required. Nevertheless, if autonomicity is not
required, our solution can support downsizing, keeping only the Monitoring and Execution com-
ponents. These components interact with the target service by means of sensors and actuators
included respectively in the monitoring and in the execution phases, leveraging the information
available through the specific technologies made available by the service provider to a common
ground where they can be used by the other phases. This way we tackle heterogeneity/open-
ness.

The different components that implement the MAPE loop can collaborate in order to decen-
tralize the monitoring and management tasks, and propagate the monitoring information they
collect to the level where it is needed to take appropriate decisions. By keeping this informa-
tion close to the services where it is obtained, and making it available through their defined
interfaces, we aim to provide efficient propagation.

The component-based approach allows us to provide different implementations (extensibil-
ity) for each phase, which can be developed in rather independent ways and interact through
defined interfaces. As we have presented through Section 3.1, there exist many different tools
and technologies that can be used to address each phase, and our aim is to make possible for
them to collaborate in an easier way.

We organize the collaboration between the components implementing the MAPE phases for
each service, according to the architecture of the service-based application. As we rely in an
SCA design, we profit of the explicit offerings and dependencies stated by the SCA Components,
as well as the hierarchical composition in order to establish the collaboration links between our
components.

Finally, we propose our framework to be reconfigurable, so that we consider the dynamic at-
tachment and removal of the MAPE components to the target service, with the aim to support
different management requirements (flexibility). In fact, it is not required that all the compo-
nents of the MAPE loop be available in all services, but only those that are needed for providing
the autonomic behaviour over the composition.

By relying in a component-based approach that can be added or removed at runtime, we also
release the programmer of the service-based application from the burden of manually including
monitoring and management concerns when developing the application.

4.2 Benefits of the solution for supporting autonomicity

Besides our solution offering each individual service the support for plugging its own autonomic
behaviour, it also supports a distributed interaction of control loops.

One of the motivations to have a distributed interaction of control loops is the possibility
of making them collaborate to implement some global autonomic management task. Featuring
autonomic management when considering an application that is not standalone but built out of
independent and loosely coupled services is not simple as it raises several issues. One of them
is the appropriate distribution of an autonomic task designed from a global point of view, into
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several smaller tasks that can collaborate to achieve a common goal whenever scalability is a
concern, and the distributed nature of the application to manage wants to be leveraged. In fact,
due to the wide distribution that can be achieved by a service-based application, it is not in
general reasonable to maintain at all times a complete and updated model of the situation, upon
which to base the decision taking. It is also not possible, due to the evolving characteristic of a
composed service to foresee all the modifications that can be needed, as the composition of the
service may change and one action predefined for a particular situation may be not applicable
once a service has been replaced because the target service does not belong to the composition
anymore, or because the new service has a different management interface.

It is, in general, more common to devise solutions to individual, simple and autonomic man-
agement tasks like the replacement of a single service, the modification of a parameter of a
service, or the addition of a new element in a composition. However, for implementing effec-
tive autonomic tasks that take into account, for example, the complete situation of a composed
service-based application before taking a decision, an appropriate interaction between several
simple tasks must be possible. In this sense, our framework does not enforce a particular kind of
solution, nor does it define or promote a method for dividing a autonomic global task into smaller
ones. Nevertheless, our framework intends to facilitate the implementation of such tasks by
providing an architecture where the different elements that are necessary to implement the
autonomic task can be inserted and can further interact. Concretely, through our solution, we
support the insertion of simple management execution tasks over a running service-based appli-
cation. Simple execution tasks refers to specific tasks for a service according to the nature of the
service and its implementation. These tasks may include incrementing the number of threads
to run an application, replace a given required or client service by an equivalent one from an-
other provider, add or remove bound services, migrate a service from one hosting environment to
another. Besides including individual execution tasks, making them available through defined
interfaces aims to facilitate the interaction of these different tasks, and allow the composer of
the application to provide some self-* features to the resulting compound service.

To better illustrate the potential benefits, we briefly highlight below, and in more details in
Chapter 8, how the framework can be used to implement an autonomic solution featuring self-
optimizing, self-healing behaviours guided by SLOs inserted in each component, and propagated
only until the required level, in a “bottom-up” way.

4.2.1 A self-* scenario

In Section 2.5.3 we mentioned some advantages that self-* features can provide to service-based
applications, by automating common management tasks that may be required at situations that
are, in general, unforeseeable.

Consider, for example, a service-based application for image storing that comprises many
replicas of its storage components in order to reduce the access time to its contents. We illustrate
how self-optimized and self-healing behaviours can be obtained still within the constraints given
by the associated SLOs.

A condition over this service may require that the average delivery time of an image be less
than 5 seconds. If the application becomes popular, the number of concurrent accesses may pro-
voke an increase of the response time. The manager of the service may decide to create a storage
replica in another environment with better performance so to restore the average response time
to the initial requirement. This is a simple autonomic self-healing response to an increase
in the reading of a metric about response time. However, if the new hosting environment be-
comes suddenly unavailable, the response time will naturally increase, and the manager will
need to deploy new replicas in a third environment to support the incoming requests. Figure
4.1 shows an example of this situation, where the square boxes represent the elements that are
dynamically attached by our framework.

In any case, the use of new replicas in externally hosted environments is not free for the man-
ager, so he may need to introduce an additional condition limiting the maximum cost of having



66 Chapter 4. Positioning

RT=7s.

Service
Adaptation

Storage
Service

Storage
Replica-1

Storage
Front-End

Storage
Replica-2

Infrastructure A

Storage
Service

Storage
Replica-1

Storage
Front-End

Storage
Replica-2

Infrastructure A

Storage
Replica-3

Infrastructure B

RT=4s. RT=2s.

RT=5.5s. RT=4.33s.

RT <= 5s.

Figure 4.1: Self-Healing adaptation by deploying a new replica in another infrastructure

distributed replicas in different environments. For each of these environments the pricing model
may be different and require the reading of different metrics in order to compute it. By inserting
the appropriate logic in each replica, the manager can achieve a common view of the cost and
insert a different autonomic behaviour that takes into account both the average response time
and the total cost of the replicas in order to add or remove these replicas to/from the composition,
achieving a self-optimizing behaviour, illustrated in Figure 4.2.
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Figure 4.2: Self-Optimizing adaptation distributing the existing resources in available infras-
tructure, decreasing cost and maintaining response time.

4.2.2 Action propagation

Other kinds of action that we intend to facilitate with our framework is the implementation
of local autonomic control loops. By this, we mean autonomic control loop that control a spe-
cific section of a service composition, and whose action needs not to collect a global state of the
application, allowing to apply local optimizations.

A simple example, based on the same scenario of the previous section, involves attaching
an autonomic action to each storage space, that considers the remaining free storage space. If a
certain level of free space is reached, then a local autonomic action may compress some elements
in order to made up more free space. In case no more compression is possible a notification is
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sent to the Storage Service, which could decide to take a further action and, f.e., provide another
storage unit, as shown in Figure 4.3

Storage
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Storage
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Storage
Front-End

Storage
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Infrastructure A

Storage
Replica-3

Infrastructure B

if not possible to 
compress

action: notify

freeSpace >= 10%

if freeSpace < 10%
action: compress

Infrastructure C

if low space
action: request new 

space

Figure 4.3: Action generated in a particular element, that is propagated to a higher level man-
ager, which can decide upon other action.

Overall, we can reinforce that the framework allows the runtime insertion of different phases
of the MAPE autonomic control loop in order to support the management needs of the applica-
tion. We aim to facilitate the communication between the different capabilities that each service
may include, which may comprise all or part of the MAPE loop, providing an environment where
autonomic behaviours can be inserted into the services.

4.3 Summary

We have presented our solution in the light of the requirements that we have identified from
the context of service-based applications, and the state-of-the-art. Once describe our scientific
contribution, we have presented the technological background we use to support our solution and
that will be used to provide a concrete implementation, namely the GCM model and its reference
implementation GCM/ProActive. We describe how the features found in GCM/ProActive allow
us to support the requirements for our thesis.

In the next chapter we present the design of our solution from a technologically independent
point of view, and then we describe the details of our concrete implementation in the GCM/ProAc-
tive middleware, using GCM/SCA as a suitable composition framework for SCA-based applica-
tions that can be turned autonomic.
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In the previous chapter we have presented the background over which we build our contribu-
tion. This chapter presents the generic design of a reconfigurable component-based support for
providing flexible monitoring and management capabilities to component-based service-oriented
applications.

In order to not lose genericness in our description we refer to the notation of the SCA specifi-
cations to present our design. Although we are aware that SCA by itself does not provide recon-
figuration features, we explain when needed the reconfigurability capabilities that are needed.

Section 5.1 presents a general view of our approach integrating all the phases of the au-
tonomic control loop. Sections 5.2 to 5.5 describe the requirements for each phase and how we
address them, presenting the interfaces design for each element. Finally Section 5.6 summarizes
this chapter.

5.1 Overview

Our solution relies on the separation of the steps of the classical MAPE autonomic control loop.
Namely, we envision separate components for monitoring, analysis, planning, and execution.
These components, in the following called MAPE Components communicate through predefined
interfaces, and are attached to each component that needs management, and possibly autonomic
capabilities.

A service that has been augmented with monitoring and management capabilities becomes
a managed service. The aim is that the attachment of these capabilities be as less intrusive as
possible, and independent of the functional design of the service. This is why the proposition,
from an external point of view, considers the addition at design time of a set of interfaces to a
regular SCA service, to transform it into a managed SCA service as shown in Figure 5.1.

The additional interfaces are inserted at design time by augmenting the SCA ADL descrip-
tion. However, we expect that the MAPE components can be dynamically added or removed at
runtime. In fact, this specific requirement goes in line with the goal of avoiding unnecessary in-
trusiveness in the functional objective of the managed service, by attaching to it only the MAPE
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Service
A
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A
actions
SLOs

 metrics
 metrics

actions design time
addition

Figure 5.1: SCA component Service A is seen as a Managed Service A with additional interfaces

components that are needed. This also implies that at some moments the additional interfaces
may be available but without any component attached. Depending on the component implemen-
tation, this may require the existence of dummy or empty components to those interfaces.

The general structure of a service component that follows our design is shown for an individ-
ual Service A in Figure 5.2. Service A is augmented with one component for each phase of the
autonomic control loop: Monitoring, Analysis, Planning, and Execution. This way, Service A is
converted into a composite Managed Service A, indicated by dashed lines. The original “service”
and “reference” interfaces of the service component are promoted to the corresponding interfaces
of the composite, so that from a functional point of view, the composite Managed Service A can
be used in the same way as the original Service A. In both Figures 5.1 and 5.2, the interfaces
that are added by our framework are shown as smaller interfaces, only in order to differentiate
them from the original interfaces of the service. The objective of these additional interfaces is to
be able to interact with the corresponding interfaces of other managed services.

Service
A

MonitoringAnalysis

Planning Executionactions

Managed Service A

actions

SLOs

SLOs metrics  metrics

actions

 metrics

monitoring data

execution

 alarm

Figure 5.2: SCA component Service A with all its attached monitoring and management compo-
nents

Figure 5.2 also shows dashed arrows connecting the Monitoring and Executing components
with Service A. These arrows indicate that the Monitoring component must be able to collect
monitoring data from the running service according to the specific ways that this target service
allows. On the other side, the Executing component must be able to execute actions over the
target service using the specific means for that service. These two steps are the only phases that
enforce communication of the elements of the framework with the managed service.

The intended functioning of the framework is as follows. The Monitoring component collects
monitoring data from Service A using the specific means that A may provide, f.e. using sensors
for reading parameters of the service, or intercepting requests on the interfaces of the service.
Using the collected monitoring data, the Monitoring component computes a set of metrics and
makes them available through a metrics interface. The computation of metrics may include col-
laboration with the Monitoring component of other services. The Analysis component provides
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an interface for receiving and storing SLOs. At runtime, the Analysis component checks the
SLOs using the appropriate metrics that it obtains from the Monitoring component. Whenever
a condition is not fulfilled, the Analysis component sends an alarm notification to the Planning
component. The Planning component uses a strategy and creates an adaptation plan as a se-
quence of actions that can modify the state of the service and take it to a desired objective state.
For taking decisions and feed the required parameters of the strategy, the planning component
can obtain information from the Monitoring component through its metrics interface. The se-
quence of actions created by the Planning component are sent to the Executing component. The
Executing component executes the actions on the service using the specific means that the ser-
vice allows. As we envisage the possibility of having actions that include other services, the
Executing component is able to delegate some actions to the Executing component of other ser-
vices through an actions interface. This way, the loop is completed and the new information
collected by the Monitoring component will reflect the new state of the service.

Although simple, this component-oriented view of the autonomic control loop has several
advantages:

• First, by separating the control loop from the component implementation, we obtain a
clear separation of concerns between functional content and non-functional activities.
In fact, the only point where the framework must be connected with the target service are
the Monitoring and Executing phases, in which the specific means to connect to the target
service must be used.

• Second, the component-based approach allows to have separate implementations of each
phase of the loop. As each phase may require complex tasks, we abstract from the specific
implementation that each service may require and let the phases to communicate through
predefined interfaces, so that each phase can be implemented by different experts.

• Third, as each phase can be implemented independently, we allow to compose each phase
to have possibly multiple components, for example, multiple sensors, condition evaluators,
planning strategies, and connections to concrete effectors as it is required, so that the
implementation of each phase can be improved at runtime by applying dynamic reconfigu-
rations if needed.

As we have mentioned before, a managed component comprises the interfaces that we have
designed for communicating with other components. These interfaces are also intended to be
used by external applications to be able to modify or adjust the composition of the control loop.
At the same time we do not impose as a requirement that all the elements of the MAPE loop must
be present in all the managed services. In fact, one of the advantage of using a reconfigurable
component-based approach is that it is possible to introduce only the phases that are required
in each managed service. However, a design decision is needed when specifying the interfaces
that a component will have available for the monitoring and management tasks.

As a simple example, consider a component that represents a storage service, and provides
some basic operations to read, write, search and delete files. In order to get information about
the performance of the storage service, a Monitoring component can be added and expose metrics
about the average response time for each operation, and the amount of free space. As an evolu-
tion, some non-functional maintenance actions can be exposed to compress, index, or tune the
periodicity of backups. These actions can be exposed by adding an Executing component that can
execute them over the storage service. Now the managed storage service exposes some metrics,
and exposes an interface for executing maintenance actions. However, the storage service is still
not autonomic and the reading of metrics and execution of maintenance actions are invoked by
external entities. A next evolution can consider adding an autonomic behaviour to avoid filling
the capacity of the storage service. An Analysis component can be added and include a condition
that checks the amount of free space, and in case it is less than, f.e., 2%, it triggers an action
oriented to increase the amount of free space. The decision about what action to take can be
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delegated to a Planning component, which may decide to call the Executing component to carry
on one of the available maintenance actions.

Depending on the management needs, any evolution of the storage service can be used. If the
autonomic behaviour described is not needed anymore, then the Analysis and Planning compo-
nents can be removed and return to the simple version of the storage service. The three versions
mentioned of the storage service are shown in Figure 5.3.
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Figure 5.3: (a) Storage service in its basic version, (b) with Monitoring and Executing compo-
nents, (c) with all the MAPE components

In the following, we describe the components considered in the monitoring and management
framework, their function and the design decisions that have been taken into account.

5.2 Monitoring

Monitoring usually involves the collection of information from the target service (sensing of
data), storage, filtering, and processing of the sensed data to obtain a set of metrics that is made
available for other components.

The objective of the Monitoring component is to collect the required data from the service
activity and expose it as a set of metrics that can be queried from other components. For col-
lecting the monitoring data, the Monitoring component must include the specific sensors or,
alternatively, support the communication with the sensors that are provided by the target ser-
vice according to a particular protocol. In fact, the Monitoring component can itself follow a
component-based approach, where sensors and metrics processing elements can be dynamically
plugged and unplugged in order to monitor only the values that are needed at a certain time,
and avoiding unnecessary overheads. By using the specific means to access the information
provided by the target service, the Monitoring component is effectively attached to the service,
which becomes a “monitored service”.

Figure 5.4 shows the basic design of our Monitoring component, and its interfaces. Actually,
the Monitoring component requires, at least, one service interface, here called metrics-service,
with the metrics signature. This interface allows external components to access and query the
metrics computed by the Monitoring component. Additionally, the Monitoring component has
zero or more references called metrics-reference that also provide the metrics signature, and
whose aim is to obtain monitoring information from other Monitoring components. Instead of
having one reference to all possible components, we consider that the Monitoring component
needs a reference to the Monitoring component of each service referenced by the target service,
in order to properly select the source of external monitoring information, as shown in Figure
5.5. In Section 7.2 we describe how we profit of the introspection capabilities of GCM in order to
dynamically create a Monitoring component that can be associated to each service.



Section 5.2. Monitoring 73

Monitoringmetrics-service

metrics-reference1

metrics-reference2

metrics-referencei
. . .

. . .[metrics]

metrics
 getMetricList()
 getMetric(metricName)
 subscribe(metricName)
 unsubscribe(metricName)
 insertMetric(metric, metricName)
 removeMetric(metricName)

[metrics]

[metrics]

[metrics]

management of 
sensors (polling/

listening) to collect 
information

computation of 
metrics from 

obtained values

(optional) storage of 
obtained values or 

metrics
(optional) 

communication with 
other monitoring 

components

Figure 5.4: Basic SCA monitoring component
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Figure 5.5: Monitoring Component inside a SCA component with (a) one service interface (b) one
service and two references, (c) two services and two references

In the presence of a high number of services to be monitored, the computing and storage of
collected information can be a high-demanding task, specially if it is done in a centralized man-
ner by, f.e., gathering the monitored information at a single point of analysis before computing
the metrics. Consequently, the monitoring task must be as decentralized and low-intrusive as
possible. In our approach, the Monitoring component attached to each monitored service is re-
sponsible for collecting and computing the metrics related to that service, so that the tasks of
collection and computing of metrics are distributed among all services. This approach is decen-
tralized and specialized with respect to the monitored service.

However, some metrics may require information that is available in other services; for exam-
ple, a metric that aims to obtain the energy consumption of a composition may require to obtain
the energy consumption of all the services involved in the composition. To address this situa-
tion, the Monitoring component is capable of connecting to the Monitoring components of other
services through their metrics interface. The set of Monitoring components are inter-connected
forming a hierarchy that reflects the composition of the monitored services. This arrangement
provides a “monitoring backbone” where the metrics collected at each service can flow and can
be used by other components.

Figure 5.6 shows an example of an SCA composite C with two inner components A and B, and
that uses two external services D and E. The design below shows the Monitoring components
Ma, Mb, Mc, Md and Me, attached to each component connected forming a “monitoring backbone”
with bold lines. Mc is connected to Ma, because the service interface of C is connected to A; and
to the Monitoring components of both external references, Md and Me. In the same way, Ma
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is connected with Mb because A has a reference on B; and Mb is connected to Mc as B has
a reference on D promoted through the composite C. Finally, Ma also has a reference to an
external service E promoted to C, so Ma is also connected to Mc.
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Figure 5.6: An SCA application, and the inner “monitoring backbone”

Figure 5.6 also shows an example of a metric named “energy” (e(i)) for each component i. Each
Monitoring component Mi is in charge of computing its value e(i) as the sum of its own energy
metric, and those of its references. In the case of the composite C, the value e(c) is the sum of the
values of both internal components, e(a) and e(b), and of its references e(d) and e(e). Using the
connection between the different Monitoring components, the total value e(c) is computed by Mc
and exposed through its metrics interface. Note that the means for computing the energy metric
for each component may be different, depending on the characteristics of the implementation;
however, once the value is computed in the corresponding Monitoring component, it is accessible
in a uniform way by the other Monitoring components.

From the point of view of its input and output, the Monitoring component receives a set of
monitored data, and produces a set of metrics. The Monitoring component abstracts the way to
collect the values that it needs. The collection can rely on a simple periodic reading of a value,
f.e., by reading the Unix file /proc/loadavg to obtain the average CPU load; but arbitrarily
complex means can be considered, f.e., detecting single events like the sending of a request and
the reception of its response, that can be used to obtain the duration time of a request; another
approach may include the collection of event streams that can be used with a Complex Event
Processing engine to correlate events and help to detect certain conditions.

The Monitoring component should allow two ways to expose the metric it computes. In a
push mode, the Monitoring component receives requests for subscription to metrics and upon
each change in the value of this metric, it sends an update notification to the requester. In a pull
mode, the Monitoring component receives a request for a metric, and replies with the current
value. Depending on the application and the nature of the monitored value, one mode may be
more convenient than the other.
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5.2.1 Interfaces

We describe the main methods on the metrics interface of a Monitoring component. We expect
that an implementation of this component should extend this interface.

• List<String> getMetricList(). Obtains the list of available metrics in the Monitor-
ing component as a list of names.

• MetricValue getMetric(metricName). Obtains the value of the metric indicated by
metricName.

• MetricValue getMetric(metricName, params[]). Obtains the value of the metric
indicated by metricName, including optional parameters for evaluating the metric.

• subscribeMetric(metricName). Subscribes to be notified of changes in the value of
the metric indicated by metricName. The ability to communicate these changes must be
support by the metric.

• subscribeMetric(metricName, params[]). Subscribes to be notified of changes in
the value of the metric indicated by metricName, including optional parameters for evalu-
ating the metric. The ability to communicate these changes must be support by the metric.

• unsubscribeMetric(metricName). Unsubscribes from changes to the value of the met-
ric indicated by metricName.

• insertMetric(metric, metricName). Inserts a new computation logic, named metric,
for computing the value of a metric named metricName.

• removeMetric(metricName). Remove the metric indicated by metricName from the
Monitoring component.

In Section 7.2 we describe our implementation of this interface in the context of the Monitor-
ing component that we have implemented over the GCM/ProActive platform.

5.3 Analysis

The Analysis phase in our framework is expected to check the SLA compliance of the service.
We call this component the Analysis component.

The Analysis component needs a clear description of an SLA. In our design we consider an
SLA as a set of simpler terms called Service Level Objectives (SLOs). The SLOs are represented
as conditions that must be verified at runtime.

The design of our Analysis component considers a service interface for receiving the SLOs
that must be verified, called SLOs. We also consider two reference interfaces: one for notifying
about a fault in the compliance of the SLA, with the alarm signature; and other to be able to
collect the metrics required to check the compliance to the SLA, that implements the metrics
signature. In contrast to the Monitoring component, which can have many metrics references,
the Analysis component only needs one, because it only needs to connect to the Monitoring com-
ponent. The basic design is shown Figure 5.7.

One of the challenges of the Analysis component is to be able to understand the conditions
that needs to be checked, and extract the required metrics from Monitoring component. There
exist several languages proposed for representing SLOs and the metrics they require, as pre-
sented in Section 3.1.2. Using a component-based approach inside the Analysis component it is
possible to embed an interpreter for these languages into the Analysis component.

For illustrating purposes we use a very simple way to describe SLOs, where they are re-
presented by conditions expressed as triples of the form 〈metric, comparator, value〉, expressing for
example “maxResponseTime ≤ 30sec”. Other more complex expressions may involve conditions
that include comparisons between different metrics, or operations on them like “cost(serviceA) <
2× cost(serviceB)”.
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Figure 5.7: Basic SCA analysis component

Whatever the internal composition of the SLOs, it is very important that the Analysis com-
ponent be able to extract from them the name of the metrics that are required to check the
compliance, so that it can request the value of the appropriate metrics to the Monitoring compo-
nent using the metrics interface. In the example of the SLO 〈cost,≤, 20〉, the Analysis component
must request the current value of the metric cost to the Monitoring component.

The periodicity of the analysis phase is also a matter that concerns the Analysis component.
The Analysis component can use a subscription method over the metrics interface to be notified
of each change in the value of a metric (push mode), so that the Analysis component can check
the corresponding condition upon each notification. Another possibility is that the Analysis
component periodically requests the value of a metric to check (pull mode). As mentioned before,
it is up to the implementation of the Analysis component to determine the best way, and the
framework considers the possibility of using both modes with the same or different metrics.

From the point of view of its input and output, the Analyzer receives a set of conditions
(SLOs) to monitor, expressed in a predefined language. The Analyzer checks the compliance
of all the stored SLOs according to the metrics reported by the Monitoring component, and
determines if the SLA is being fulfilled. In case it is not, the Analyzer component sends an
alarm notification through a required interface. The consequences of this alarm are out of the
scope of the Analyzer and will be mentioned in the next section. An optional capability is that the
Analyzer be configured in a proactive way to detect not only SLA violation, but also foreseeable
SLA violations, which may be more useful in some contexts, as it can allow to take actions to
avoid an SLA violation, as those mentioned in Section 3.1.2.2.

One of the advantages of having Analysis component attached to each service is that the
conditions can be checked closely to the monitored service and do not involve more resources than
those of the interested services, benefiting of the hierarchical composition of the “monitoring
backbone”. This way, the services do not need to take care of SLAs in which they are not involved.

Figure 5.8 shows an example of an SCA application composed by three services. Service A
has an Analysis component (Aa), and a Monitoring component (Ma). Service B and C are used
by A. Service B includes an Analysis component (Ab) and a Monitoring component (Mb); service
C only includes a Monitoring component (Mc).

In the example of Figure 5.8, the Analysis component Aa must check the SLO “〈cost, <, 30〉”
over Service A. For checking that condition, it requires the value of the metric cost from Ma. In
Ma, the computation of the metric cost requires the value of the metric cost from both services
B and C. Ma obtains this information from the corresponding Monitoring components Mb and
Mc and is able to deliver the response to Aa. It is worth noting that Aa is not aware that the
computation of Ma actually required additional requests to Mb and Mc, as this logic is hidden
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Figure 5.8: SCA Components with Analysis and Monitor components. Aa and Ab have different
SLAs. Metric cost is computed in Ma by calling Mb and Mc. Intermediate promoted interfaces
are not shown for clarity.

into Ma. In another situation, independent from the previous one, the Analysis component Ab
checks a condition related to the response time (respTime) metric from service B, which requires
to read the appropriate metric from Mb.

5.3.1 Interfaces

The metrics interface, used for accessing the metrics available from the “monitoring backbone”
has been already described in Section 5.2.1. The alarm interface includes one relevant method:

• notify(alarmType, SLO). Sends a message indicating that there is a problem with the
specified SLO. Depending on the value of alarmType, this could indicate that SLO has
been violated, or that it has a risk of being violated.

The SLOs interface includes methods for managing the set of SLOs that are checked by the
Analysis component.

• addSLO(SLO,sloName). Inserts a new SLO to be checked by the Analysis component, and
identified by sloName.

• removeSLO(sloName). Removes the SLO indicated by sloName.

• enableSLO(sloName). Enables the dynamic checking of the SLO indicated by sloName.

• disableSLO(sloName). Disables the dynamic checking of the SLO indicated by sloName.

The SLOs interface allows to manage the set of SLOs by an external entity, as well as tem-
porarily disable or enable their dynamic checking.

5.4 Planning

The objective of the Planning phase is to generate a sequence of actions that can take the service
from its current state to a predefined objective state. In our case, the objective state is the
condition (the SLO) that has been violated, and the event that triggers the computation of a
plan is a notification indicating that a condition is not being fulfilled.

For creating such a plan, the Planning component must execute a strategy, or planning algo-
rithm that can determine that sequence of actions. This logic can be implemented in a number
of ways. On the more simple side, a strategy may be a notification to a human agent (email,
SMS, etc.) who would be responsible of taking any further action; another alternative could rely
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on a table of predefined actions, such that if some conditions hold, then the corresponding action
is generated. On a more complex side, numerous strategies and heuristics, in particular from
the artificial intelligence area have been proposed for planning a composition or recomposition of
services that complies with certain desired QoS characteristics. Some of them have already been
presented in Section 3.1.3, and the aim of our Planning component is to be capable of supporting
the implementation of such existing strategies.

Given the wide range of different solutions for generating a plan, it does not seem easy to
find a common interface to uniform all the possible strategies. However, most of the strategies
require as input information about the current status of the service in order to guide the possible
solutions. Consequently our Planning considers one interface for obtaining information about
the state of the service, connected to the Monitoring component. The goal is that, through the
Monitoring component, the strategy embedded in the Planning component be able to access the
information it requires to feed the selected strategy.

Although a simple implementation would embed one specific strategy, our approach considers
that several conditions may be supported by the Analysis component, consequently, several con-
ditions may need to be checked and, if it is necessary to take some actions, different strategies
may be applied upon each case. That is why we think that a component-based approach applied
to the Planning component should be able to support different planning strategies that would
be activated depending on the condition that needs to be restored. As a basic implementation of
the Planning we consider that this must be able to support one or more planning strategies, and
be able to associate a faulting condition to an appropriate strategy. Figure 5.9 shows the basic
design of the Planning component that includes a service interface with the alarm signature
as defined from the Analysis component, and that is able to specify a faulting condition and an
optional level of severity to indicate that the condition has been violated; or that, if it has not
been violated, there exists a possibility that it is, and that an action should be considered. On
the reference side, the Planning component considers an interface with the metrics signature
that is able to communicate with the Monitoring component and, through it, it is able to obtain
the value of the metrics that the chosen strategy requires. Finally an interface supporting the
actions signature should be able to send a set of actions in a predefined language that must be
interpreted and executed by the Executing component.

Planningalarm-service
metrics-reference

actions-reference
[alarm]

[actions]

[metrics]

actions
 sendActions(actionList)
 sendAction(action)

support for one or 
more strategies

association of faulting 
condition and severity level 
to an appropriate strategy

generation of (list 
of) actions in a 
defined format

Figure 5.9: Basic SCA Planning Component

We have mentioned that a component-based approach inside the Planning should be able to
better deal with different strategies by hosting them, f.e., as different components. It is also a
concern of our framework, and one of the requisites mentioned in Chapter 4, that these strate-
gies may be replaced at runtime. For example, an application may be driven by cost-saving
strategy and, at some point the administrator may need to change the requirements and enforce
an energy-saving strategy. In that case, a replacement of the corresponding strategy should be
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triggered in the composition of the Planning component. However, this task is not an autonomic
task of the framework itself and is, instead, driven by an administrator of the management
layer. In Section 7.6 we describe a tool that we have designed to support the insertion and re-
moval of strategies, assuming that the platform used for implementing the framework (in our
case, GCM/ProActive) supports such kind of runtime modifications.

From the point of view of its input and output, the Planning component receives a notifica-
tion about a faulting condition and, using the available monitoring information, it generates a
sequence of actions that can take the service to a desired state.

Figure 5.10 shows an example, where service A uses two services B and C1. The Planning
component of A, Pa receives an alarm from the Analysis component Aa indicating the condition
〈cost, <, 30〉 has been violated, and that an action should be taken. Pa executes a very simple
strategy, which intends to replace the component with the higher cost. For obtaining the cost
of both components B and C1, Pa uses the Monitoring component Ma which communicates with
Mb and Mc1 to obtain the required values. As C1 has the higher cost, the strategy determines
that this component must be replaced. Pa uses an embedded reference to a discovery service, to
obtain an alternative service, in this case C2 which provides the same functionality as C1 (this
is required to not interfere with the functional task of the application) and whose cost allows to
satisfy the condition 〈cost, <, 30〉. With all this information Pa is able to produce a single action
replace(C1, C2) as output.

It is worth to notice that all the logic of the strategy is encapsulated inside Pa, and that Ma is
only used to obtain the values of the metrics that the strategy may require.

Service B

Mb

Service
A

Service C1

Mc1
Aa

Service C2

Mc2

Strategy:
getMetric(cost,B)=?

getMetric(cost,C1)=?
getMetric(cost,C2)=?

output: replace(C1,C2);

Ma

Action:
replace(C1,C2);

Pa

Alarm:
cost(A) >= 30

SLO:
cost(A) < 30 cost(B)=18

cost(C1)=20

cost(C2)=5

Figure 5.10: Example for the Planning component.

5.4.1 Interfaces

The alarm interface is used for receiving the faulting condition and its associated severity level.
The metrics interface is used to access the monitoring information from the Monitoring compo-
nent, that may be needed by the strategy prior to generate the list of actions.

The actions interface has the objective of sending an action or a set of actions to an entity (the
Execution component) that is able to interpret them and execute them over the target service.

• sendActions(actionList). Sends a sequence of actions as a list that must be executed
on the target service.

• sendAction(action). Sends a single action to be executed on the target service.

The format and definition of an action is a concern of the implementation. Actions may have
different content depending on the strategy that generated them and, in that case it would be
the responsibility of the Execution component to appropriately interpret them. A more general
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approach can facilitate the interpreting task by incorporating part of it in the Planning compo-
nent, in a manner that the Planning component generates an abstract set of actions, regardless
of the strategy that created them. Then, the Execution component would only need to associate
them to concrete actions on the actuators of the target service.

5.5 Execution

The objective of the Execution component is to carry out the sequence of actions that have been
determined by the Planning component, on the target service.

Although it seems reasonable that once the actions have been decided, those be executed
immediately, the Execution has more relevance than just executing actions. One of the reasons
for having a different component is to separate the description of the actions from the specific
way to execute them. In the same sense that the Monitoring component abstracts the way
to retrieve information from the target service and provides a common interface to access the
metrics it collects, the Execution component abstracts the communication with the target service
to provide a uniform way to execute actions on the service.

Figure 5.11 shows the basic design of the Execution component. The service interface actions
provides a way to send actions or a list of actions to the Execution component. Additionally
the Execution component, in a similar way to Monitoring component (Figure 5.4) contains zero
or more reference interfaces with the actions signature that allows to communicate with each
one of the services that the target service references. The aim of these actions interfaces is
to be able to delegate actions to other components and allow a decentralized transmission and
execution of actions. Depending on the nature of the actions they can be sent in a synchronous
or asynchronous way.

Executingactions-service

actions-referencei

[actions]

[actions]

execution of 
actions on the 
target service

translation of actions to the 
support provided by the 

service

transmission of 
actions to external 

services

. . .

actions-reference2
[actions]

actions-reference1
[actions]

. . .

Figure 5.11: Basic SCA Executing Component

One of the challenges in the Execution phase is to ensure that the action will not make the
application enter in an unsafe state. This problem is left to the execution implementation.

Figure 5.12 shows an example where three actions are generated by the Planning component:
one to replace a service, one to unbind a service from another, and the third to set a parameter on
a referenced service. In the example, the Planning component of A, Pa has sent a list of actions
to the Execution component of A, Ea. The action of replacing component C1 by C2 is executed
locally at A. However, the unbinding of service of the reference b1 on service B must be executed
by the Eb; and the setting of the parameter “threads” on service C2 must be executed by Ec2 . By
using the connections between the different Execution components, the actions can be delegated
to the appropriate place.

Note that so far we have made no assumption about the order of the execution of the actions.
Although the expected behaviour is that all the actions are executed sequentially, in some cases
some actions may be triggered in parallel. However, the problem of determining which of those
actions may be concurrently executed and in a safe way, it is not trivial at not addressed in this
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Service B b1

Eb

Service
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Service C1

Ec1
Pa

Service C2

Ec2

Actions:
replace(C1,C2);
unbind(B,b1);

set(C2,threads,10);

Ea

Service D

replace(C1,C2);

set(C2,threads,10);

unbind(B,b1);

Figure 5.12: Example of propagation of actions through executors

work. In the implementation that we describe on Section 7.5, we assume that the mechanism
allow a correct execution of actions according to the order in which they were generated.

5.6 Summary

In this chapter we have presented the design considerations taken into account for each one of
the components that are expected to implement the different phases of the MAPE autonomic
control loop, along with some examples of utilization. The interfaces to let the different phases
to communicate have been presented as basic requirements, expecting that a concrete imple-
mentation can extend them as needed.

The description has been presented using the SCA notation with the intention that the pre-
sentation be general enough to be applied in any SCA compliant platform. Although we have
tried to be as technologically-agnostic as possible, some details remain that must be unavoidably
addressed by the supporting platform, f.e., the insertion and removal of metrics and strategies
in the Monitoring component and in the Planning component, respectively; the choice of the
appropriate way to describe the SLOs on the Analysis component; and the language to issue the
actions to be executed by the Executing component. These considerations have been described in
a general way as requirements over the implementation of the framework, and will be properly
addressed in the next chapter.

In the next chapter we describe the implementation that we have carried on to show the use-
fulness and practicality of our approach on a particular technology. We give details on how the
components are implemented taking into account the specific features of the hosting technology,
and, at the same time, satisfying the presented design considerations.
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This chapter presents some technical details about the platform over which we provide an
implementation of our framework. Once presented the design considerations in Chapter 5, we
need to introduce our concrete implementation, which requires to introduce some technical con-
tributions in this platform.

Section 6.1 presents briefly the main concepts of the Fractal component. Section 6.2 de-
scribes the characteristics of GCM, whose design is heavily inspired by Fractal, and details
which improvements it provides respect to the base Fractal implementation, and they support
our solution. Section 6.3 describe the main features of the GCM/ProActive platform, the refer-
ence implementation of GCM, and over which we implement our framework. Finally Section 6.4
describes the technical choices and contributions we have made in order to properly support the
design that we describe in Chapter 5 for this specific case.

6.1 Fractal

The Fractal1 component model [BCL+06] is a general component model intended to implement,
deploy, and manage complex software systems. Among its main features, Fractal includes:

• Hierarchical component model. Fractal components may be primitive, basic components;
or composite components which are components that can contain other sub-components.
This offers a uniform view of the application at various level of abstraction.

1http://fractal.ow2.org/
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• Reflection. Fractal components have reflective capabilities and they are able to introspect
their external and internal structure, giving them control over their own content, bindings
and lifecycle.

• Reconfiguration. Applications based on Fractal components can be dynamically (re)configu-
red by modifying their bindings dynamically.

A Fractal Component is a runtime entity that is encapsulated, has an identity, and supports
one or more interfaces. An interface is the access point to the functionality of the component
and may have one of two roles: server interfaces, which accepts incoming operation invocations;
and client interfaces, which supports outgoing operation invocations. The main elements of the
Fractal component model, as well as the usual notation, are indicated in Figure 6.1.

Bindings

Primitive
Component

Composite
Component

Content
Membrane

Client
Interfaces

Server
Interfaces

Control
Interfaces

Figure 6.1: Elements of the Fractal component model.

Fractal components are basically composed of a membrane, that supports introspection and
reconfiguration of the internal features of the component, and a content which includes a finite
set of other components (called sub-components) in the case of a composite component, or an
implementation logic in the case of a primitive component.

The membrane of a Fractal component comprises internal an external interfaces. Internal
interfaces, which exist in the case of a composite component, are only accessible from the sub-
components of the composite. External interfaces, are accessible for components from outside.
The membrane is composed of a set of object controllers, which allows to manage the content
of the component by, f.e., controlling the lifecycle (start/stop) of the component, reconfigure the
bindings to other components, add/remove components to/from a composite, modify attributes of
the content. The Fractal model is defined as an extensible system, so that it is possible to create
custom controllers according to the management requirements of the application. The manage-
ment tasks from the controllers are available by special interfaces called control interfaces.

An important concept in Fractal is the binding mechanism, which allows to build the ar-
chitecture of a Fractal application. Bindings allow to connect one client interface to one server
interface, meaning that the operation invocations emitted by the client interface should be ac-
cepted by the server interface. In order to be bound, both the client and the server interfaces
must belong to the same address space. This means that bindings cannot cross membranes. For
example, in the case of a composite, an external component cannot bind directly to a server in-
terface of a subcomponent. In the same way, a subcomponent cannot bind to the server interface
of a component that is external to its composite.

By managing their bindings and composition, a Fractal application can be structurally re-
configured. This means that the structure of the application can be modified by changing the
bindings of a component to other server interfaces, or by adding or removing components to/from
a composite. The only requirement for such changes is that the component or components that
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are going to be reconfigured must be in the stopped state, in order to guarantee the integrity of
the composition.

The type of a Fractal component is determined by the set of interfaces it contains. Apart
from their role, interfaces include the concepts of cardinality and contingency. Cardinality may
be singleton indicating that the component has exactly one interface of type I, or collection,
indicating that the component has an arbitrary number of interfaces of type I; such interfaces
are usually created lazily, i.e., upon request of a bind operation. The contingency of an interface
refers to the fact that the functionality corresponding to the interface maybe available or not at
runtime; this way, a mandatory interface is guaranteed to be available at runtime, which means
that, for a client interface, it must be bound before starting the component; an optional interface
has no such guarantee, and the component can be started even if the interface is not bound.

Fractal has a reference implementation called Julia [BCL+06]. Julia is a Java implemen-
tation that supports the construction of applications based on Fractal components. Without
entering in deep details about the Julia implementation, it is important to mention that Julia
relies on a set of Java objects to implement the content of Fractal components, their interfaces
and controllers. Additionally, optional interceptor objects can be added in the membrane to in-
tercept functional invocations and provide some custom processing. In sum, the membrane of a
Julia component is a set of Java objects that implement the management logic. Figure 6.2 shows
a generic Fractal component, and its equivalent implementation view in the Julia framework.

Julia implementationFractal model

Java object 
(implementation)

interceptors

object controllers

control tasks

functional invocations

Interface
objects

Figure 6.2: Model of a Fractal component versus its Julia implementation

Regarding the management features of Fractal components, the specification2 exemplifies
some useful controllers:

• Attribute Controller. Exposes getter and setter operations for certain configurable at-
tributes of the component.

• Binding Controller. Exposes a BindingController interface that allows to bind and
unbind the client interfaces of the component to external server interfaces.

• Content Controller. Exposes a ContentController interface that allows to list, add, and
remove sub-components from the content, in the case of a composite.

• Life-cycle Controller. Exposes a LifeCycleController interface that allows to explicitly
control the running state of the component.

Fractal has served as the basis for developing SCA compliant runtime platforms as FraSCAti,
which benefits from the reflective Fractal features, and provides reconfiguration capabilities to
architectures based on the SCA specification.

2http://fractal.ow2.org/specification/

http://fractal.ow2.org/specification/
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Fractal applications can be described using the Fractal ADL3, an XML-based descriptor lan-
guage, that allow to describe all the elements (components, bindings, controllers, implementa-
tions, interfaces) of a Fractal application and their assembly.

6.2 GCM

The Grid Component Model (GCM) [BCD+09] is a component model targetted at the design,
implementation and execution of grid-aware component-based applications. The GCM model
has been specified by the Institute on Programming Model of the European CoreGRID project,
and standardized by the European Telecommunications Standards Institute (ETSI).

The specification of GCM is based on the Fractal Component Model. Consequently, GCM
components share many characteristics with Fractal components in terms of hierarchy, com-
position, interfaces, bindings and reconfiguration capabilities. However, GCM enforces some
considerations that are not part of the main Fractal specification:

• Support for distributed deployment.

• Better support for collective communications.

• Strict separation between functional and non-functional concerns.

The architecture of a GCM application can be described using the GCM ADL, which extends
the Fractal ADL to include the elements defined by GCM. In the following we describe the main
features of the GCM model that we intend to exploit in the development of our solution [OAS07]:

6.2.1 Support for distributed deployment

One of the differentiating features of GCM is its generic support for distributed deployment,
which is based in the Virtual Node (VN) abstraction. A Virtual Node is an abstract reference
to the resource where the component will be deployed. This abstraction captures the deploy-
ment requirements and allows to separate the tasks of designing the architecture of the GCM
application, from the provisioning of the resources where the components will be deployed.

Virtual Nodes possess a cardinality property that can be defined as single or multiple. In the
first case, the VN must be mapped to exactly one node on the physical infrastructure, while in
the second case it can be mapped to (i.e. encompass) several nodes.

The information about VNs is included in the GCM ADL and it describes a virtual infrastruc-
ture. At deployment time, the VNs must be associated to a concrete physical infrastructure. The
provisioning of the physical resources can be delegated to a specialized tool. An example of such
a tool is the ProActive Resource Manager, which is able to manage nodes from several source
infrastructures, and provide them to the application in a uniform way.

In a situation where the infrastructure support for service-based applications relies more and
more in highly available computational resources, offered itself “as a Service”, a generic means
to describe the infrastructure applies well to this vision, as it allows to abstract the design of the
application from the actual infrastructure.

6.2.2 Support for collective communications

The support for collective communications is improved in the GCM model by the introduction of
gathercast and multicast interfaces, with the aim of providing efficient many-to-one and one-to-
many communications. These interfaces allow to manage a group of interfaces as a single entity,
exposing the collective nature of GCM Components. The notation for both interfaces is shown in
Figure 6.3.

3http://fractal.ow2.org/fractaladl/

http://fractal.ow2.org/fractaladl/
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gathercast server interface gathercast client interface
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Figure 6.3: Gathercast and Multicast Interfaces in GCM

6.2.2.1 Gathercast Interfaces

Gathercast interfaces allow many-to-one (M × 1) communications, and can be used to perform
synchronization, parameter gathering, reduction, and result dispatch. The specific behaviour
for these interfaces can be specified using different aggregation policies.

Gathercast interfaces receive invocations from multiple bound interfaces, gathering all the
parameters, and reducing them to a single invocation. When a result is obtained, the gathercast
interface performs the corresponding dispatch to all the invoking partners.

6.2.2.2 Multicast Interfaces

Multicast interfaces allow one-to-many (1 × M) communications, and can be used to perform
parallel invocations, parameter dispatch and result gathering. The specific behaviour for these
interfaces can be configured using dispatch modes. Dispatch modes may be used to define the
way the parameters of the original invocation will be divided between the different destinations,
or for choosing on which one of the connected interfaces the invocation will happen.

Multicast interfaces transform a single invocation into possible many parallel invocations.
When a result is obtained, the possible multiple results can be aggregated and returned to the
original invoker.

The existence of gather and multicast interfaces is initially developed for functional inter-
faces, and allows that a component be bound to an undetermined number of interfaces. In
our approach, we expect to be able to communicate with the membranes of all the components
involved in an invocation, and the multicast interface constitutes and appropriate means for
accessing multiple membranes according to the architecture of the GCM application.

6.2.3 Support for Non-Functional concerns

The Fractal specification, and its Julia reference implementation, describe management ele-
ments as a set of object controllers contained in the membrane of a Fractal component. These
object controllers are defined in a static way and they are described using the Fractal ADL.

GCM components extend this notion to allow the introduction of Non-Functional (NF) Com-
ponents [DFG+08]. NF Components reside in the membrane of GCM Components, and have
a similar goal to object controllers: to provide management features to GCM components, and
ultimately take charge of Non-Functional tasks.

6.2.3.1 Separation between Functional (F) and Non-Functional (NF) concerns

The motivation for providing a “componentized” membrane to GCM Components, is to allow the
composition of more complex activities in the control part, and to provide a more clear separation
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of concerns between the functional and the non-functional tasks. For this matter, the GCM ADL
can be split and the componentized architecture of the membrane can be described in a separate
file from the functional part. This allows to develop both parts in a rather independent way and
to associate them only at deployment time, enforcing the separation of F and NF concerns.

A point must me made to explain what we mean by Non-Functional tasks. Non-Functional
tasks refer to all those tasks that are not related to the main goal (or functional goal) of a GCM
Component. Although a proper definition depends on what is ultimately the functional goal
of a GCM Component, or “what is the component expected to do”, Non-Functional tasks can
be defined as the tasks that support the functional goal of the component, or that allows the
component to do what it needs to do. Non-Functional tasks usually include the management of
the structure of the GCM application (bindings and compositions), management of the lifecycle
of the component, and in general, the supervision of the execution of the functional goal.

6.2.3.2 NF Interfaces

In many cases, management activities may require a meaningful collaboration of several tasks,
that can be spread transversally to other components. For example, to get a measure of the
energy consumption of the application, it is necessary to aggregate the energy consumption of
all the individual components.

GCM includes additional control interfaces, referred to as NF interfaces. Where Fractal com-
ponents provides only NF server interfaces to allow access to NF tasks, GCM includes NF client
interfaces. NF client interfaces can be bound to NF server interfaces of other components, in
order to communicate with the membranes of different components and allow collaborative NF
tasks. We will use the possibility of having a component-oriented view of the membrane of GCM
Components, to provide a flexible and collaborative implementation of the MAPE autonomic
control loop, as we describe it in Chapter 7.

With respect to internal interfaces, GCM allows the membrane to communicate with the
content in order to allow a hierarchical communication and collaborative NF tasks between a
composite and its subcomponents. For this case, GCM defines additional internal NF interfaces.
Internal NF interfaces allow components residing in the membrane of a GCM Component to
communicate with components residing in the functional content, and conversely, it allows sub-
components to communicate with the components residing in the membrane.

6.2.3.3 Notation and NF Bindings

Figure 6.4 shows an example of a GCM application, where NF Components have been intro-
duced in the membrane of a composite and a primitive component. Note that GCM allows the
co-existence of both object controllers and NF Components (sometimes also called component
controller) in the membrane. However, object controllers cannot be modified at runtime, and
cannot be bound to, or communicate with other NF interfaces as NF Components do.

The description in Figure 6.4 also illustrates the possible bindings using the newly introduced
interfaces. A client interface of a NF Component can connect to an internal NF client interface
that pertains to the membrane (1). This internal NF client interface acts as a passage from the
membrane to the content. An internal NF client interface can bind to the external NF interface
of a sub-component (2), concretizing the communication from the membrane to the content. This
allows to propagate management tasks originated in the membrane, to the membranes of sub-
components. A very simple example can be a stop signal sent from the membrane of a composite
that can be propagated to the membranes of its internal subcomponents.

Conversely, the communication can also flow from the content to the membrane. An exter-
nal NF client interface of a subcomponent can connect to an internal NF server interface of its
parent component (3). This internal NF server interface acts as a passage from the content to
the membrane. The internal NF server interface can connect to the server interface of a NF
Component (4), concretizing the access to the management task. This allows the membranes
of sub-components to access to management tasks on the membrane of its parent component.
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For example, a component that represents a storage resource can use a NF client interface to
communicate to its parent that the storage capacity is near full, so that the membrane of the
composite can take some action.

The other elements shown in Figure 6.4 indicate the bindings between the external NF server
interface of a component with the server interface of a NF Component in the membrane (5); the
bindings between the client interface of a NF Component to an external NF client interface (6)
allow communication with the exterior. Finally, an external NF client interface can be bound to
an external NF server interface of another external component (7), effectively communicating
the membrane of two components and allowing to implement collaborative NF tasks. For exam-
ple, a security manager residing in the membrane can propagate a security certificate to all the
components with which it maintains a functional binding in order to authenticate itself.
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Figure 6.4: Elements of a GCM application including NF Components in the membrane

6.2.3.4 Standard Controllers

GCM provides interfaces for the basic controllers mentioned in the Fractal description (Section
6.1), and define some additional standard controllers:

• Gathercast Controller. Allows the management of gathercast interfaces, i.e., the creation
of gathercast interfaces and the management of their connections.

• Multicast Controller. Allows the management of multicast interfaces, i.e., the creation of
multicast interfaces and the management of their connections.

• Membrane Controller. The Membrane Controller manages the composition and bindings
of NF Components residing in the membrane, as well as the addition or removal of NF
Components to/from the membrane. It also manages the bindings to/from internal NF
interfaces, allowing the connection of the NF interfaces of sub-components with the mem-
brane activity.

6.2.3.5 Reconfiguration

Basic reconfiguration capabilities in GCM, inherited from Fractal, allow to modify the bind-
ings between GCM Components, and add/remove subcomponents to/from a composite. Also, like
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Fractal, the only requirement for executing these structural reconfigurations is that the compo-
nents be in a stopped state (which does not mean undeployed), in order to preserve the integrity
of the composition.

Nevertheless, GCM also allows to structurally reconfigure the membrane [BHN09]. In fact,
the set of NF Components in the membrane can be seen just like another GCM application and
their bindings and composition relationships can be modified at runtime if needed. Regarding
the lifecycle of the application, an intermediate state is added in which the GCM Components
can be in a started state, but their membrane can be in a started or stopped state. When ex-
ecuting reconfigurations over the membrane composition it is required that the membrane be
stopped, which means that all the NF components inside the membrane of a single GCM compo-
nent must be stopped.

6.3 GCM/ProActive

The reference implementation of GCM has been developed over the ProActive middleware and is
referred to as GCM/ProActive. GCM/ProActive features an implementation of components based
on an active object model that supports asynchronous communications based on transparent
Future objects.

The basic important notion is that in GCM/ProActive all components (primitive and compos-
ite) are implemented by Active Objects. This implies that components have a single thread of
execution, and a queue where requests are stored to be executed in an asynchronous way.

In the following we describe some features of the GCM/ProActive implementation, that we
need to consider in the implementation of our framework. We describe, the active object model
and its asynchronous communication, the current instrumentation capabilities, and message
tagging feature.

6.3.1 Active Objects and Asynchronous Communication

An Active Object is built using an extensible meta-object protocol (MOP) architecture, which
uses reflective techniques to abstract the distribution layer and offer asynchronism. The MOP
architecture is shown in Figure 6.5.
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Figure 6.5: Meta-object architecture

An Active Object is concretely built from a “root object” (of type B in Figure 6.5) which is a
common regular (passive) object. An object called body is attached to the root object, and this
body references several features meta-objects with specific roles (fault tolerance, security, group
communication, etc). Additionally, an object called stub is created as sub-type of the root object
B, so that from the point of view of the invoker, the destination looks like a common object of
type B.
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Asynchrony is provided as follows. An invocation on the Active Object B is actually an invo-
cation on the stub object, which creates a reified representation of the invocation including the
method called and its parameters. This “reified invocation” is given to a proxy object that trans-
fers it to the destination body, possibly through a network, and places the reified invocation in
the request queue of the Active Object. The request queue is one of the meta-objects referenced
by the body. Once the reified invocation (the request) is placed in the request queue, the rendez-
vous time finishes. If the method invoked is expected to return a result, then a Future object is
created on the caller side and returned back as a result to the caller. The Future is a placeholder
for the return value of the invocation and comprises a Future stub that is a sub-type of the re-
turn type of the invocation, and a Future proxy that references the actual returned value. The
object that has issued the invocation can now continue executing in a regular way. However, if at
some point it requires to read the actual returned value, it will block until the value is available,
or it will continue transparently if the value has already been obtained. This feature, that is
transparent for the application, is called wait-by-necessity.

After the request has been placed in the request queue of the active object, it can be served
asynchronously at any time according to the serving policy of the active object (by default, a
FIFO policy). Once the active object has served the request, it contacts transparently the object
that sent the request (and which holds a Future object for the response) and updates the result,
unblocking any thread that may have been doing wait-by-necessity on this result. However, the
caller may also have sent copies of this Future object as a response to other objects, or as a
parameter to subsequent requests. These copies must be also transparently updated, and the
mechanism used is called Automatic Continuation.

Node 1 Node 2

network
stub

B proxyA
B

Active Object bObject a

b body

Node 1 Node 2

network
stub

B proxyA
B

Active Object bObject a

b body
r

Future
stub R

Future
proxy

b.foo()

reified
b.foo()

b.foo()

b.foo()

Node 1 Node 2

network
stub

B proxyA
B

Active Object bObject a

b body
r

Future
stub R

Future
proxy

return
value

r

Node 1 Node 2

network
stub

B proxyA
B

Request Queue

Active Object bObject a

b body(a)

(b)

(c)

(d)

B b = (B) PAActiveObject.newActive("B", constructorParams, node2);

R r = b.foo();

Figure 6.6: Sequence of an asynchronous call to an Active Object
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A {
...
// instantiate active object of class B on node2
B b = (B) PAActiveObject.newActive(’’B’’, constructorParams, node2);

// use active object as a regular object of type B
R r = b.foo();
...
// possible wait-by-necessity
System.out.println(r.printResult());

}

Listing 6.1: Creation of an Active Object in ProActive

Figure 6.6 shows the status of the objects after each step listed in Listing 6.1. An object a
of type A creates an active object b of type B remotely located in “Node 2”, using the ProActive
API. This causes the generation of a stub of type B on the context of A, which represents the
remote active object b, and a proxy in charge of forwarding requests to the actual location of the
active object. At the same time, in “Node 2”, the active object b is created with a body, a request
queue, and the root object of type B (Fig. 6.6(a)). When a call is made on the (active) object b
(Fig. 6.6(b)), the call is made on the stub of type B. The invocation is reified by the proxy and a
rendez-vous is made in which the proxy sends the reified request to the body of the active object,
which puts it in its request queue. After this step, the rendez-vous time finishes, and the object a
creates a local Future object, initially empty, that will receive the result of the invocation, r (Fig.
6.6(c)). From this moment, both object a and b can continue their task in parallel. If a needs at
some moment to access or use the object r, it will use the corresponding FutureStub, but if the
value has not yet been computed by b, then the thread of a will block at the FutureProxy until the
result is available (wait-by-necessity). On the other side, b decides asynchronously to serve the
request and compute the result r. When b has finished serving the request, the body sends the
value r to the caller (a) which handles it to the corresponding FutureProxy that updates the value
(Fig. 6.6(d)). At this moment any thread that was blocked waiting for this result is released.

6.3.2 Asynchronous Communications in GCM/ProActive components

GCM/ProActive provides an implementation of GCM on top of the ProActive middleware. Con-
sequently, each GCM/ProActive component is implemented by an Active Object that comprises
a single thread of execution, a body, an a queue of requests. The implementation is based on the
MOP architecture in the way presented in Figure 6.7. The main difference is that the role of the
stub in the basic MOP architecture is taken by two interfaces:

• The Component interface exposes the GCM Component nature of the active object, and
allows to introspect details of the component.

• One Interface interface is dynamically generated for each server interface declared by the
component, according to the functional methods included in the interface.

These elements act as local representatives of a remote GCM/ProActive component, and use
the proxy to allow the interaction with the body of the active object. The body includes additional
component meta-objects that include the controllers mentioned in Section 6.1 and 6.2.

An invocation from a GCM component to another takes a path like the one shown in Figure
6.8. GCM Component A is bound to GCM Component B from the client interface aItf of A
to the server interface bItf of B (this requires that the interfaces be compatible). The binding
operation is realized using the BindingController of A, and the consequence is that the active
object A holds a reference to the Interface and Component representatives of component B (Fig.
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functional interfaces are dynamically created locally when creating the reference to the
component.

The controller part of the component is implemented as meta-objects as can be seen
on the top right of the figures. These meta-objects implement the different controllers,
in particular the basic controllers (binding, lifecycle etc...).
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Figure 5.1: ProActive Meta-Object architecture for primitive components

Primitive components In a primitive component, the content of the component corre-
sponds to an implementation class, which in ProActive is the root object of the active
object, as represented on the bottom right of the figure. Following the Fractal speci-
fication, the primitive class may have to implement some callback interfaces such as
BindingController or AttributeController, which are invoked from the meta-level for
performing operations which are dependent on the applicative implementation code.

Composite components Figure 5.2 represents an instance of a composite component.
A composite component is a structuring component which does not have any business
code. Hence the empty composite object as the root of the active object. However, a
composite component still offers and requires functional services, and the interfaces
objects corresponding to these services are implemented as meta-objects, as represented
on the top right of the figure. They may represent internal client interfaces or external
client interfaces. A composite component also offers a ContentController interface and
implementation as a meta-object, for controlling the components it may contain.

Figure 6.7: Meta-object architecture

6.8(a)). The representatives are used to make an invocation on the client interface aItf of
component A. The call is reified and transmitted as an invocation on the server interface bItf
of component B, which is stored in the request queue of active object B (Fig. 6.8(a)). Once
the request has been stored in the request queue of B, component A holds a Future object for
receiving the result of invocation. Component B takes the request from its queue, and when it
has finished serving it, sends the result back and updates the Future object in component A (Fig.
6.8(b)).

Composite components in GCM/ProActive does not contain any implementation logic. In-
stead they act as containers for subcomponents. Composite components contains passive objects
for their associated interfaces and controllers, and a single Active Object that handles the invoca-
tions received on the server interfaces of the composite and delegates the call to the correspond-
ing bound subcomponent, acting like a proxy for any external entity that wants to communicate
with a subcomponent. In the same way, the composite Active Object handle all the outgoing
invocations from a subcomponent through a client interface to an external entity. In order to
preserve encapsulation, a subcomponent can make invocations on the internal server interface
of its parent component, which forwards the request to the external component bound to the
corresponding client interface of the composite, acting like a proxy for outgoing invocations. A
simplified view of the invocation flow through GCM/ProActive components is shown in Figure
6.9. The GCM application is the same of Figure 6.4, however NF Components are not shown for
clearness.

Bindings are implemented as references from the Java objects that implement the logic of a
primitive component, to the object that represents the server interface of another GCM compo-
nent.

6.3.3 Basic instrumentation in GCM/ProActive

The GCM/ProActive middleware has been instrumented using the Java Management Extensions
(JMX) technology, in order to provide notifications about events occurring in the middleware.
GCM/ProActive provides a ProActive JMX Connector that enables to connect to and propagate
JMX notifications asynchronously using ProActive communication semantics.

The bodies of active objects are instrumented with MBeans (BodyWrapperMBean) that are
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used to generate JMX Notifications. Table 6.1 shows the notifications generated by the ProActive
middleware related to the service of a request and the management of Future objects.

Notification name Event
requestSent Component sends a request

requestReceived Component receives a request
servingStarted Component starts serving a request from the queue

replySent Component sends a reply
replyReceived Component receives a reply

voidRequestServed Component finishes serving a request that does not return a value
waitForRequest Component is waiting for new requests

receivedFutureResult Component receives an update for a Future value
waitByNecessity Request has been blocked due waiting for a Future update

Table 6.1: Notifications generated by GCM/ProActive
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This set of notifications has been used in applications related to the ProActive middleware,
like IC2D, a graphical tool that allows to monitor and benchmark Java ProActive applications.
IC2D listens to JMX notifications generated by the BodyWrapperMBean objects of ProActive ap-
plications to graphically represent communication among active objects, and obtain performance
information about the time spent in the internal tasks and communication of a ProActive-based
application.

However, the current implementation does not allow to correlate the time spent serving dif-
ferent requests that have a causal relation, making harder to isolate sources of poor perfor-
mance. Also, the replySent notification is sent both at the end of the rendez-vous time, and upon
any update of a Future object, making harder to compute the effective time spent by an active
object serving a specific request, as it does not consider the fact that the reply to a request may
also include a Future value which must be later updated again.

Information about deployment details can be obtained also through MBeans. ProActive run-
times and nodes are instrumented with a ProActiveRuntimeWrapperMBean and a NodeMBean.
The first one allows to collect information about the virtual machine that hosts the ProActive
application, like the amount of heap memory, number of threads, number of bodies, and CPU
load. The second one exposes information about the concrete node that hosts the application like
the list of active objects and the name of the assigned Virtual Node.

6.3.4 Message Tagging in GCM/ProActive

ProActive provides a message tagging API that allows to attach custom information to messages
sent between active objects, called tags. The tags added to a request by one active object can
be retrieved and read by another active object. The API allows to identify individually differ-
ent tags, so any number of tags can be attached without interfering, other than the additional
amount of information sent. At the same time, the API allows to define a task that can be applied
to a tag before its propagation according to the specific treatment that application needs.

A very simple example of this feature is to implement a counter, as a tag whose task is to
increment a value by one before each propagation. This tag, when read at the each destination
active object indicates the depth of the invocation.

Another example application of message tagging is to identify distributed flows in the invo-
cation of a request. A distributed flow allows to find all the communications that are causally
related in a distributed application. In this case the task associated to the tag would be to repli-
cate an identification value through every invocation. The requests that share the identifier
belong to the same distributed flow.

6.3.5 Additional Features

6.3.5.1 Legacy Code Wrapping

GCM/ProActive components can be used to wrap existing legacy code, allowing to manage a non-
componentized application in a component-oriented way. This wrapping method has been devel-
oped with the aim of automatically deploying and executing native applications like C/C++/Fortran
MPI code, on Grid environments in a rather transparent way.

For wrapping a legacy code as those mentioned, some small pieces of the MPI code must
be modified, however, to use the ProActive communication API that allow the wrapping. Once
an applications is wrapped inside GCM/ProActive component, this can be deployed and man-
aged like any other GCM/ProActive application. By using a C/JNI library that includes simple
management operations (init and terminate) communication primitives (synchronous/asyn-
chronous send and receive), it is possible to communicate native processes with Java active
objects from GCM/ProActive.
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6.3.5.2 GCM/SCA

The membrane of GCM components allows to adapt the NF characteristics of the components.
One example has been developed in the adaptation of GCM as an SCA compliant runtime plat-
form. This platform, called SCA/GCM comprises two additional controllers. The SCAIntentCon-
troller and the SCAPropertyController. The SCAIntentController allows to attach intent han-
dlers to a given server interface, with the objective that all incoming invocations are intercepted
by the intent handler before its normal processing. This allow to associate objects implementing
SCA Intents to SCA/GCM components. The SCAPropertyController allows to access and modify
properties on SCA/GCM components. Properties are fields of the GCM Components that have
been previously identified as such using SCA annotations.

6.4 Technical Contributions

Once presented the technological background that supports our solution we justify the technical
choices we have made when using GCM/ProActive as support for our framework, in the light of
the requirements for our solution, expressed in Section 4.1.2 and 4.1.3. Then, we briefly describe
the technical contributions that we have provided in order to implement our framework in this
concrete technology, these being further described in the following chapters.

6.4.1 Technical Choices

All along the description of our solution in Section 4.1.3, we have aimed to solve the require-
ments that we mentioned in 4.1.2 for obtaining a generic and flexible solution for monitoring
and management of service-based applications.

We have described the GCM model and the relevant features of its reference implementation
GCM/ProActive for our solution. As we have chosen the GCM/ProActive technology to provide
an implementation of our solution, we describe how this technology helps us to address the
requirements that we have mentioned.

• Extensibility. By defining a set of component interfaces for the functionality provided by
each phase of the MAPE loop, we expect to provide a skeleton where different implemen-
tations of each phase can be plugged.

• Flexibility. The runtime reconfiguration features available in GCM allows to give an ap-
propriate support for inserting and removing elements from the framework, ultimately
obtaining reconfiguration at the level of the monitoring and management framework itself.

• Heterogeneity. Although it is supported by a specific technology, the componentized and
dynamic nature of GCM/ProActive allows to plug adaptors at the monitor and at execution
phases in order to receive information from various sources, and send actions to different
execution supports, by developing adaptors for each situation. Moreover, by using the VN
abstraction, it is possible to abstract several infrastructure destinations.

• Efficiency. By attaching NF Components to the membrane of GCM Components, the MAPE
loop can be specialized for each component, avoiding transmitting unnecessary information
to f.e. a centralized location, and allows to take decisions and execute actions at a more
fine grained level. At the same time, by using NF interfaces, it is possible to establish a
collaboration between the membranes of different components when needed.

• Autonomicity. By implementing different phases of the autonomic control loop inside the
membrane of GCM Components, it is possible to provide an autonomic behaviour to ser-
vices that can be highly personalized. The framework defined this way allows a more easy
insertion of autonomic capabilities, while preserving the abstraction, encapsulation, and
separation of concerns between the F and NF activities when developing the application.
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These features offered by GCM/ProActive allows to address the requirements we have pointed
out in Section 4.1.2 showing that it is an appropriate choice for implementing our solution. How-
ever, some aspects are not completely covered in the current version, so we have provided some
technical contributions in order to properly support our implementation.

6.4.2 Technical Contributions

Once presented the technologies that we have chosen to support the implementation of our
framework, we detail the technical contributions that we have provided.

• Extension of collective behaviour to NF interfaces. In order to keep the separation of con-
cerns between F and NF activities, and allowing a more transparent collaboration between
membranes, the GCM collective multicast interfaces described in 6.2.2 are extended to
provide the same capabilities to NF interfaces.

• Definition of interfaces for MAPE-like behaviour. In order to provide flexible implementa-
tions of the MAPE autonomic control loop, we have defined a basic set of interfaces that
allow the different phases to interact in an independent way of the specific implementa-
tion. These interfaces must be provided by any custom GCM component to be introduced
in the framework.

• Set of NF Components for building autonomic control loops. As a consequence of separating
the phases of the MAPE autonomic control loop, we have developed a set of basic and flexi-
ble NF Components that can be inserted and removed to/from GCM components, and that
can be used to compose efficient autonomic control loops, or to attach custom monitoring
and management tasks.

• Definition of an API for managing the monitoring and management framework. We have
provided and implemented an API that allows to introduce the NF Components that im-
plement the MAPE phases in the membrane and compose them in a flexible way to provide
the monitoring and management behaviour required. This API allows to use components
from the set of predefined NF Components that we have provided, or to use custom NF
Components that comply with the interfaces. At the same time we have provided a console
for managing the framework using this API.

• Instrumentation of the GCM/ProActive implementation. In order to get a detailed infor-
mation about the requests completion and performance of GCM/ProActive requests, even
considering that these requests may come from wrapped applications, we have introduced
events and improved the meta-information propagated by the requests considering the
asynchronous communication protocol and the Future update mechanism. These addi-
tions allow to get a real decomposition of the time spent serving requests. We have also
provided sensors that allow to correlate the GCM/ProActive components with the concrete
nodes where they have been deployed.

6.5 Summary

We have presented our solution in the light of the requirements that we have identified from
the context of service-based applications, and the state-of-the-art. Once describe our scientific
contribution, we have presented the technological background we use to support our solution and
that will be used to provide a concrete implementation, namely the GCM model and its reference
implementation GCM/ProActive. We describe how the features found in GCM/ProActive allow
us to support the requirements for our thesis.

In the next chapter we present the design of our solution from a technologically independent
point of view, and then we describe the details of our concrete implementation in the GCM/ProAc-
tive middleware, using GCM/SCA as a suitable composition framework for SCA-based applica-
tions that can be turned autonomic.
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Chapter 5 presented the design of our framework, including the general guidelines and con-
sideration that should be taken into account in an implementation. Chapter 6 gave the technical
about the GCM/ProActive middleware which we use a support for a particular implementation
of our framework that we describe in this chapter to demonstrate the feasibility and practicality
of our solution.

Section 7.1 gives a general view of the implementation of our framework and the technical
contributions that we have provided. Sections 7.2 to 7.5 detail the implementation we have
provided for the different phases. Finally, Section 7.7 summarizes this chapter.

7.1 Framework Implementation

As mentioned in Section 6.2, the GCM model allows the dynamic insertion of Non-Functional
(NF) Components in the membrane of a regular GCM component, that can be bound to NF
Interfaces, and whose objective is to take care of NF concerns of the component.

99
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We provide an implementation of our framework as a set of NF Components inserted in the
membrane of a regular (functional) GCM component. Figure 7.1 shows the general structure of
a GCM component implementing a service called Service A, where a set of NF Components have
been inserted in its membrane. Additionally, the NF Components are interconnected following
the design of Figure 5.2.
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Figure 7.1: Framework implementation inserted into the membrane of a GCM/ProActive com-
ponent implement Service A

The example shows the four MAPE NF Components inserted in the membrane of Service A:
Monitoring, Analysis, Planning, and Execution. In addition to the existent functional interfaces
of Service A, and the common NF interfaces that a GCM component usually includes (such as
Lifecycle, Binding and Name), the Managed Service A component includes three NF Service
interfaces that allow to access the monitoring and management capabilities of the extended
service: Monitoring Service, SLA Service, and Execution Service. As long as the original Service
A has F client interfaces, the extended Service A includes also NF Client interfaces to interact
with the Execution and Monitoring interfaces of other components.

The implementation of the framework includes:

• An implementation of the four MAPE components that complies with the design described
in Chapter 7.

• A library of elements that can be plugged and unplugged to the provided elements in the
framework, to modify its behaviour.

• An external console application that can manage the insertion and removal of the MAPE
NF Components in the membrane of a GCM application.

The intended use of the framework is that the programmer, instead of creating a GCM Com-
ponent using the standard NF Type, will create the component with an extended NF Type that
will add the required NF interfaces to the component. The addition of these interfaces does not
oblige the component to have MAPE NF Components in its membrane, but it is only a techni-
cal need to have the appropriate points of entrance to interact with those components in case
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they are present. The initial component composition of the membrane can be described at de-
ployment time using the NF ADL section of the GCM ADL, in a way that the needed MAPE
NF Components will be automatically deployed. However, this composition can be modified at
runtime using the console application provided. In fact, the console is used not only to insert or
remove elements from the membrane, but also to bind them in an appropriate way and to add
or remove elements to customize its behaviour.

Once the MAPE NF Components are inserted in the membrane, and configured using the
console application, they can be started. In a similar way as described in Section 5.1, the Moni-
toring components use internal event listeners and sensors to collect and store information about
the GCM/ProActive application. Using the information collected, the Monitoring computes a set
of metrics that can be queried and read by the Analysis component in push or pull mode. The
Analysis component checks a set of conditions using those metrics and may decide to trigger
an alarm message to the Planning component if some condition deviates from the intended be-
haviour. The alarm message is analyzed by the Planning component which executes one strategy
and may require obtaining more metrics information from the Monitoring component. The out-
put of this strategy is a set of actions in a standard language that must be associated to concrete
actions and carried on by the Executing component. This general function is displayed in the
sequence diagram of Figure 7.2.

Monitoring Monitoring
(external) Analysis Planning Execution

compute
Metric()

execute()

computePlan()

Service A

events

getMetric()

update()
check()

alarm()

getMetric()

actions

Figure 7.2: Sequence diagram of the framework execution. The different tasks may run in
parallel with the functional task of Service A

It is important to mention that the steps of the cycle are executed while the managed ser-
vice continues its task, due to the fact that each NF GCM component comprises its own activity
thread. This feature is advantageous because it avoids disrupting the activity of the managed
service if it is not necessary, meaning that the managed service can continue serving other tasks
while the MAPE components devise a solution for the disrupted condition. Of course, this situ-
ation is not possible in all cases and it depends on the nature of the condition. For example, if
the disrupted condition is about the a response time longer than expected, the service time can
continue service its current request while the MAPE components analyze its situation; but if
the condition refers to a low amount of disk space that must be solved by moving or compressing
data to make more room, then the service will be disrupted anyway.

The fact that each MAPE component executes its own thread also brings some challenges.
Along with having the ability to update and check multiple conditions, it is possible that one
alarm be triggered while the solution for another one is still being done. This is not a problem if
both conditions are not correlated, and by executing concurrent strategy, both (or more) situation
may be solved. But it is not uncommon to think that may be correlated. In fact, a blocking
problem in one service, for example, low storage space, may trigger one alarm about it and,
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soon after, trigger another alarm related to a low response time (as the service is a blocked
state). It is in general not an easy task to decide automatically when two alarms (or actions)
can be executed in parallel in a safe way or not, and the safest solution, stopping the activity of
other components to ensure that only one conditions is evaluated simultaneously, invalidates the
advantage of concurrent execution. In order to not limit this capability, the MAPE components
can use the MembraneController of their hosting component to stop and restart the activity of
other components when some exclusive execution is required, and leaving this decision to the
programmer of the task.

The following sections describe in detail how we have implemented each MAPE NF Compo-
nent and, when needed, how it is attached to the GCM application.

7.2 Monitoring

We have implemented a Monitoring component with three basic tasks in mind: (1) collect mon-
itoring information from the GCM/ProActive application; (2) store the monitored information
for later use; (3) compute a set of metrics that can be queried and communicated to through a
metrics interface.

The internal structure of the Monitoring component is shown in Figure 7.3.

Metrics
Store

Monitoring
Manager

Event
Listener

Record
Store

Monitoring Component

monitoring-
service

[metrics]

external-
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[events]
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GCM/ProActive events 
(JMX)

Figure 7.3: Internal composition of the Monitoring component

The Monitoring component is a composite that includes the following components:

• Event Listener. This component acts as a listener for JMX Notifications coming from the
GCM/ProActive middleware. It comprises a server interface eventsControl to enable or dis-
able the subscription to events. The Event Listener has two client interfaces. The events
interface allows to notify about the arrival of new event. The recordStore interface allows
to store a record about the occurrence of an event. The objective of the Event Listener is to
connect to the JMX interfaces of the GCM/ProActive application and provide a representa-
tion of the occurrence of events in the form of a Record.

• Metrics Store. This component implements the metrics interface. It comprises a list of
Metric objects that can compute a value and can use the recordStore interface to obtain the
data (as a Record that it needs to compute those values). The computation of a Metric is
activated when a new event is received, or it can be executed at a periodic interval.

• Record Store. This component implements storage for monitoring Records. The interface
allows to query the existing records and obtain a subset of them; and allows to store or
update existing records.

• Monitoring Manager. This component controls the communication with the Monitoring
components of other GCM components and receives queries from them. It also includes
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one client interface for each F client interface of the hosting GCM component. It is used to
start/stop the collection of events through the eventsControl interface.

7.2.1 Instrumentation in GCM/ProActive

The provided instrumentation of GCM/ProActive (Section 6.3.3) allows to aggregate the time
spent by a GCM/ProActive application during execution, separating effective communication
time, serialization time, waiting time, and serving time, all which are relevant from the point of
view of grid-oriented applications.

Service-based applications, however, require more fine-grained analysis. This means, being
able to compute the service time of specific requests and the path flow that a request has followed
in order to identify the involved services and resources. In a common synchronous environment
the addition of an identifier for each request and a set of timers activated and deactivated after
each request sent or after each reply received would be enough to discriminate the time used
by a service. However, in the asynchronous and grid-oriented environment of GCM/ProActive,
a proper decomposition of time is not direct. Regarding the events notified by a GCM/ProActive
application (Section 6.3.3), the replyReceived notification is sent at the end of every rendez-
vous, mainly because after this time a synchronous communication has ended, and the caller
component can continue its task independently of the called component. Also, the service time
incurred by serving a task should take into account the time since the start of the service until
the final sending of the response. This seems quite evident, however the use of Future objects for
asynchronism provokes a situation where a component may send a reply for a request, because it
has finished serving that request, however the response does not yet include the final response,
and instead it may contain another Future object that is a placeholder for a response awaited
from another ongoing request to another component. So, even if a the component has finished
serving a request, it still may contain one thread in charge a waiting for the final response to
that request and that is in charge of executing an automatic continuation. From that point-of-
view even if the component has finished executing the task and may be now executing another
request, the service time for the original request is still not finished.

We have introduced additional notifications in GCM/ProActive to detect the moment when a
final result has been sent to the caller, indicating that the service call has finished and no more
additional operations related to that request remains. The list of notifications is shown in Table
7.1 and the moment where these notifications are sent are coarsely shown in Figure 7.4. It is
worth to mention that, depending on the moment that the notification is sent, the component
A may generate only a futureUpdate notification, which contains yet another Future (the one
that is created by B after calling C); or component A may receive both the futureUpdate and the
realReplyReceived notifications in which case the request sent by A is considered as served. By
the same reasons, the body of component B may generate a realReplySent notification when the
final result (with additional Futures involved is sent), or well a replyAC in the case that it is only
forwarding a partial results which must still be updated via automatic continuation. In the case
component C, no additional request is sent to other component, and the only notification sent
when it finishes serving the request is a realReplySent.

Notification name Event
realReplyReceived Component receives an updated value with the final result

realReplySent Component sends an updated value with the final result
replyAC Component sends an update value including Future objects

Table 7.1: Notifications introduced in GCM/ProActive

Due to asynchronism, it is possible that the reception of a Future object update is not neces-
sarily related to the last request that was sent by the caller. We profit of Message Tag insertion
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Figure 7.4: Schema of notifications sent during the service of an asynchronous component re-
quest

feature to introduce a tag in the requests related to monitoring of component requests, called
CMTag (Fig. 7.5). The CMTag is created when a new component request is prepared to be sent,
and whose parent request (the request that is being served when this new request is sent) does
not include such a tag. In that case, the identifier (rID) of the current request is set as the
flowID. If the parent request already includes a CMTag, the information stored in that tag is
used to create the new one, using the same flowID. The CMTag includes the rID of the current
request, the rID of the parent request (or null if there is none), information about the caller
component, interface and method called, and a flowID that is set to the rID of the first request
of this flow. This is used as a convenient way to quickly identify all the requests that are part of
the same flow without needing to follow each step of the flow.

The construction of the CMTag does not impose a big overhead in the processing of a request,
as all the information needed is available in the context of the body of an active object. In Section
7.2.3 we use this for computing the request path of a component request.
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Figure 7.5: Component Monitoring Tag (CMTag), and propagation example

Figure 7.5 also shows an example application with four components (the intermediate sup-
porting elements are not shown to simplify the description), and the CMTags propagated through
them. In the example, component A makes a request to component B with rID r0. While com-
puting r0, B require two calls to components C and D, obtaining the results in Future references
s and t respectively. However, due to the asynchronism, there is no guarantee in the order that
both references will be updated with the final value. The information stored in the CMTag of
each request is used to associate the response with the original request and determine a causal-
ity relationship. The information of the CMTag also allows to create a Record (see further in
Section 7.2.2) that is complemented with the timestamps of an event and determine the serving
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time of a request both from the point of view of the caller and from the point of view of the
receiver.

7.2.2 Model for storing metrics

We have provided a model for defining metrics and inserting them into the Monitoring com-
ponent. The implementation is oriented to capture performance related information about the
service of a request, however the model has been devised in a way that can be extended to include
additional concerns. The class diagram is shown in Figure 7.6
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ID requestID
String srcComponent
String interface
String method
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long replyTime
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ID parentID
ID requestID
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EventData data
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MaxServiceTime<Double>

Condition<T>

boolean evaluate(T)

Figure 7.6: Class diagram for managing Metrics and Records in the Monitoring component

The model considers that the EventListener has subscribed to the JMX Notifications gener-
ated by the BodyWrapperMBean attached to the GCM/ProActive component. The EventListener
transforms the JMX notifications into Records that are stored in the RecordStore, which acts as
a database. Using the interface of the RecordStore, the Records can be inserted, queried and
updated. The fetch() method can include an object that implements a Condition<T> interface.
An object with this interface implements a boolean evaluation method that can be applied to
objects of type T and can be used to filter the Records obtained from the RecordStore.

We have provided two types of Records, with the objective of obtaining performance informa-
tion about the requests and being able to trace their path. However, by extending the Abstrac-
tRecord class, other type of Records may be included.

• The IncomingRequestRecord stores data about a request that has been received on a func-
tional server interface, including the sender of the request, the time when the request was
received, the time when it was taken from the request queue to be served, and the time
when the final reply regarding this request was sent.

• The OutgoingRequestRecord stores data about a request that has been sent through a func-
tional client interface, including the destination component, the time at which the request
was sent, the time at which the final reply was received in case a response is expected, and
the time that the component was blocked in wait-by-necessity (wbn).

Upon reception of a JMX Notification, the EventListener may decide to create or update
a Record in the RecordStore. For example, when a requestSent notification is received, the
EventListener builds a new OutgoingRequestRecord using the timestamp information from the
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notification, and the request data from the CMTag, and stores it in the RecordStore. The Record
is however incomplete, as the time of the reception of the reply is yet unknown. Later, when
a realReplyReceived is received, the EventListener recovers the corresponding record thanks to
the id indicated in the CMTag and updates the OutgoingRequestRecord with the replyReception-
Time obtained from the new notification. By correctly propagating the request ids through the
CMTags, this scheme can work regardless of the effective arrival time of the notifications.

The MetricStore component stores objects of type Metric<V>. This is an abstract class that
profits of Java generics to describe an object that computes a value of type V. The Metric is
instantiated with a set of arguments and must implement a calculate() method that updates
and return a value of type V. When inserted into the MetricStore, the Metric object is provided
with a reference to the RecordStore (through the binding from the MetricStore component), so it
can send queries to it and obtain the Records it may need. The logic implemented by a Metric
element can be invoked in three different ways: (1) the Metric can be subscribed to set of Events
when inserted, so that any occurrence of one of these Events will trigger an update of the Metric
value; (2) the Metric can be updated at a regular interval, in which case the MetricStore uses a
thread to periodically execute the calculate() according to the specified period; and (3) no update
mechanism is specified, and the Metric is only update when it is requested from the Monitoring
server interface.

As an example, Listing 7.1 shows an implementation of a Metric used to obtain the average
response time of all requests received by a component on a given interface. In our implementa-
tion, this Metric is subscribed to an requestServed event, so that it is updated every time that a
request has been served by the hosting component.

public class AvgRespTimePerItfMetric extends Metric<Double> {
...
public Double calculate(final Object[] params) {

List<IncomingRequestRecord> recordList = null;
recordList = records.getIncomingRequestRecords(new Condition<

IncomingRequestRecord>(){
// condition that returns true for every record that

belongs to a given interface
@Override
public boolean evaluate(IncomingRequestRecord irr) {

String name = (String) params[0];
if(irr.getInterfaceName().equals(name)) {

return true;
}
return false;

}
}
);
// and calculates the average
double sum = 0.0;
double nRecords = recordList.size();
for(IncomingRequestRecord irr : recordList) {

if(irr.isFinished()) {
sum += (double)(irr.getReplyTime() - irr.

getArrivalTime());
}

}
value = sum/nRecords;
return value;

}
}

Listing 7.1: Implementation of the avgRespTimePerItfMetric
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The MetricsStore also provides the Metric objects with interfaces bound to all the Monitoring
components of the other GCM/ProActive components that the hosting component is bound to.
The Metric can obtain, from the MetricStore, the name of all components bound and use it to
make invocations on each Monitoring component that it may need. The actual binding from
the Monitoring interface follow the same cardinality of the corresponding functional interfaces,
meaning that multicast metrics interfaces are possible.

7.2.3 Example: Request path computation

We exemplify a distributed computation of a metric called RequestPath. The objective is to iden-
tify the path followed by the service of a specific request through a set of services, specifying the
time taken by the service to finish the task and delivering the final response. Figure 7.7 shows
an example of a GCM/ProActive application including a composite component and a multicast
interface, where a request with id r0 is sent by component Z and it triggers a set of additional
requests shown with bold arrows and their respective id.
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Figure 7.7: A GCM/ProActive application and a description of a flow triggered by request r0

The result of the computation is a RequestPath object, which is a tree-like structure of
PathItem objects. A PathItem object includes data about a particular request: the components,
interfaces, and method involved, the time that took for the a source component to obtain a re-
sponse to the request (this is, the service time from the point of view of the client), called “client
time”, and the time that the destination component took to send the response (this is, the ser-
vice time from the point of view of the server), called “server time”. The computation of each
PathItem requires the participation of both the “client” and the “server” components of each re-
quest. As both have measured the time to serve a request from their position, it is expected that
these times defer due to middleware tasks and network propagation. By analyzing a complete
RequestPath it is possible, for example, to identify the component where most of the time was
spent, and how much of that time corresponds in middleware/network propagation.

The computation relies on the information stored in the RecordStore component of each ser-
vice. The RequestPath object is built by asking each component involved in the service of a
request to compute a partial RequestPath and merging the responses on a complete Request-
Path. The response can be either a single RequestPath or more than one partial RequestPath
which must be merged to compose the complete RequestPath.

The Monitoring component of c receives a computeRequestPath invocation, with the requestID
(rid) r0 of the incoming request, the flowID f0, and a set of names of visited components. The
expected return value is a tree representing the path followed by the request from the moment
that it was received on c. As every Monitoring component is expected to return a value, it is nec-
essary to keep a list of visited components in order to not send an invocation to a component that
is already computing a subtree, otherwise a deadlock may happen. Each Monitoring component
executes the same metric:

• Add c to the set of visited components.
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• Obtain the IncomingRequestRecord I0, whose id is r0.

• Create a requestPath rp0 element with the flowID f0.

• Get I, the set of IncomingRequestRecords with flowID f0, and whose request reception time
treqRecv is later or equal than the one of I0.treqRecv. This set includes at least one request (I0),
or more than one request if the hosting component has been invoked two or more times
during the same flowID (even if it was through another server interface).

• For each IncomingRequestRecord Ii in the set I:

– Create a new pathItem pi that will be the head of a branch that starts in this com-
ponent. pi includes the request id of Ii and the “server time” obtained from it as
Ii.treplySent − Ii.treqRecv.

– Obtain the set of all the OutgoingRequestRecords whose parent has the id Ii.rid, and
add it to the set O. The set O may be empty if no additional request was sent while
serving the request Ii.rid.

– Order the elements of O by their sending time Oj.treqSent. For each OutgoingRequestRecord
Oj in the set O:

∗ If the destination component is not in the visited list, obtain the requestPath rpj
from the destination component by calling computeRequestPath with the id of Oj.
· Add the set of visited components obtained from rpj, to the current set of visited

components.
· Add the head of rpj as a child of pi.
· Complete the information in the head of rpj with the “client time” obtained

from Oj as Oj.treplyRecv −Oj.treqSent.
· Copy the other branches possibly obtained in rp0 to rpj.

∗ Else, create a new pathItem pj that will be the head of a branch obtained from
another requestPath. pj includes the request id of Oj and the “client time” obtained
from Oj as Oj.treplyRecv −Oj.treqSent.
· Add pj as a child of pi.

• After the previous step, the requestPath may include a set of branches apart from the one
with rid r0. Those branches must be checked against the list of incomplete leafs. If some of
them have the same rid, then they must be merged by including the remaining information.

At the end of the execution, the result is only one branch representing the request path
of r0, and no additional branches. As an example of an intermediate computation, when the
computeRequestPath method is called on component A, its Monitoring component finds that
three incoming requests have been made: r0, r3 and r5. For each one of these requests, a pathItem
object is created with the “server time” obtained by the records stored in A, and a call is made
to the Monitoring component of the destination component to complete the branch (Fig. 7.8(a)).
The call is made on each involved component, and a partial branch is created for each request
(Fig. 7.8(b)). The leaves of these branches may have some incomplete information, which may
be obtained in the head of the other branches before computing the complete branch (Fig. 7.8(c))

The final result is only one branch representing the complete request path, as shown in
Figure 7.9. The arrows pointing to an empty space actually are branches that have already been
computed and merged, and they are shown this only for clarity.

7.2.4 Additional considerations

Though this implementation is enough to fit our purposes, it does not impose a particular way
to implement the monitoring task. One of the advantages considered when using a component-
based approach is that the functionality of each element can be encapsulated from the rest. That
said, the RecordStore can be implemented by a database engine if more complex processing
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Figure 7.8: Tree obtained from a request path computation

is needed. Also, the functionality of the RecordStore and the EventListener can be partially
supported by a Complex Event Processing engine like Esper, while keeping the rest of the MAPE
components unchanged.

7.3 Analysis

The Analysis component is implemented with the tasks of (1) receiving the description of an SLO
and store it as a verifiable condition, (2) identify the metrics required to verify the associated
condition, and (3) verifying at runtime the stored conditions, either by subscription to metrics or
by periodic updates, and generate alarms if needed.

The internal composition of the Analysis component is shown in Figure 7.10
The Analysis component is a composite that includes the following NF components:

• SLO Store stores the list of SLO objects and maintains their status. An SLO can be disabled
and re-enabled at runtime, in particular when an action is being taken regarding this SLO.

• SLO Analyzer receives the SLO object received by the SLOs interface, and transforms it to
an internal representation that can be stored in the SLO Store, and determines the metrics
needed to verify the compliance. It is expected that by replacing this component with an
appropriate implementation, other models for representing SLOs can be used.

• SLO Verifier checks the compliance of the enabled SLOs from the SLO Store. It is able to
communicate with the Monitoring component in order to obtain the values of the metrics
needed. The metrics can be obtained by subscribing to them and checking them every time
an update is obtained from the Monitoring component, or in a periodic way.

• SLA Manager receives the representation of an SLO and manages the analysis process. It
uses the SLO Analyzer to obtain a common representation of an SLO and store it in the
SLO Store; and gives this SLO object to the SLO Verifier to check the compliance.

7.3.1 SLO Representation

One of the main challenges of the Analysis phase is to be able to interpret an SLO, expressed as a
condition, and be able to verify it by obtaining the required runtime values. As shown in Section
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Figure 7.9: Tree obtained from a request path computation. Some portions of the branches have
been omitted for clarity.
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Figure 7.10: Internal Composition of the Analysis component

3.1.2, several languages and models have been proposed to represent and verify SLAs. In order
to demonstrate the use of our framework we have provided a simple yet useful model. Although
not powerful enough to express complex conditions, this model allows to obtain a simple and
quick runtime verification.

An SLO object represents a triple 〈metricN, comparator, threshold〉, where metricN is the name
of a metric that can be obtained through the Monitoring component; comparator is a condition
that can be applied over the metric; and threshold is threshold value that can be used by the
SLO Verifier to decide if an alarm must be generated. The SLORule object implementation, as
shown in Figure 7.11, considers the comparator as Condition<T> object, where T is the type of
the value obtained by the metric and against which the threshold value is compared. Optionally,
the SLO object can include a preventiveThreshold value, that can be used to decide the level of
the alarm generated (if any).

On the other side, when an Alarm object is generated, it includes the SLORule object that
was being verified when the alarm was triggered, and an AlarmLevel whose aim is to indicate
a severity about the fault. We have defined three levels: OK, Preventive, Faulting, to indi-
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cate respectively that the SLO is accomplished, that the obtained value is between the preven-
tiveThreshold and the threshold value. Actually, when the SLO is accomplished (OK level), no
alarm should be generated.

7.3.2 SLO Verification

The sequence for verifying the compliance of an SLO is shown on Figure 7.11. The Analyzer
component receives a description of an SLO in a predefined language (1). In this example we
have assumed an XML-based language, although the objective is to support existent languages
by implementing the task of the SLO Analyzer. In the next step, the SLO Analyzer converts the
representation to an SLORule object (2), that is stored in the SLO Store (3). The SLO Store may
have several SLORule elements (4).

The SLA Manager coordinates all the steps. The SLA Manager orders the SLO Verifier to
initiate the compliance checking of the SLOs stored in the SLO Store (5). Depending on the
characteristics stored for the SLO, the SLO Verifier can monitor the compliance in two modes:
either using a pull mode where the SLO Verifier executes periodically a getMetric call on the
Monitoring component to recover the needed metric(s) and check the SLO; or a subscription
mode, where the Analysis component subscribes to the corresponding metric on the Monitoring
component (6) and the checking is performed upon every update notification received (7). In
case that the obtained value for the metric does not satisfy the condition specified by the SLO,
an alarm with Faulting level is created and sent through the alarm-service (8).
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T metricValue
Condition<T> condition
T threshold
T preventiveThreshold
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AlarmLevel level
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Figure 7.11: Steps in SLO verification

A preventive approach can be provided by using the optional preventiveThreshold defined
for the SLORule, however the way to actually consider the preventive threshold, and how to
interpret its value is a task that corresponds to the implementation of the Condition. The design
of the Condition may consider the existence of the preventiveThreshold and discriminate if the
obtained value for the metric is located outside of both thresholds, or between the preventive
threshold and SLO threshold, and in that case return an appropriate AlarmLevel that will be
used to construct the Alarm object.

Listing 7.2 shows an example of a simple Condition that obtains Double value from a met-
ric and compares it to a maximum value specified by the Threshold values. Another example
may consider, instead of a fixed preventive threshold value, a percentage of the maximum al-
lowed value. For example, an SLO that checks the available disk space may consider a preven-
tiveThreshold as a percentage of minimum free space allowed, and the implementation of the
Condition must interpret this percentage.
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public class PreventiveCondition implements Condition<Double>
{ ...

public AlarmLevel evaluate(final SLORule<Double> rule) {
double currentValue = rule.getMetricValue();
if(currentValue < rule.getPreventiveThreshold()) {

return AlarmLevel.OK;
}
else if(currentValue < rule.getThreshold()) {

return AlarmLevel.Preventive;
}
else {

return AlarmLevel.Faulting;
}

}
}

Listing 7.2: An implementation of a simple Condition that uses a preventive threshold

The example assumes that the SLORule is subscribe to the updates of the Double value of a
Metric. For this reason, the evaluate() method only needs to read the value that has already been
updated into the SLORule. In other situations, the invocation to the getMetricValue() method
of the SLORule may involve an invocation to the Monitoring component to obtain the needed
value.

7.4 Planning

The Planning component receives an Alarm object and, based on the contents, it takes the fol-
lowing actions: (1) associate the problem detected with one available strategy, (2) execute a
strategy, (3) send the actions obtained from the strategy to the Execution component.

The internal composition of the Planning component is shown on Figure 7.12.

Strategy
Manager

Planning Component

alarm-service
[alarm]

monitoring-
service

[metrics]

actions-service
[actions]

Planner1

Planner2

PlannerN

.

.

.

Figure 7.12: Internal Composition of the Planning component

The main component is the Strategy Manager, whose task is to receive the Alarm object that
includes the description of the SLO that provoked the alarm. The Strategy Manager implements
a simple diagnosis method based on a table that associates the metric mentioned in the faulting
SLO with a list of available strategies. The objective of this table is to decide on a set of strategies
that should be able to solve the problem that has caused the SLO fault and restore that condition
on the component.

Once a particular strategy has been chosen, the Strategy Manager invokes the corresponding
Planner component to execute it and generate a plan. The Strategy Manager can select from
a list of several Planner components bound to the multicast interface. This kind of interface is
used to support an undefined number of bindings. As a fail-safe support a default null strategy
that does not generate an action is always accessible.
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7.4.1 Selection of a Strategy

The first step of the Strategy Manager component is the selection of the Planner component to
invoke. This decision is guided by a table of ordered DecisionEntry objects. Each entry repre-
sents a criterion based on the metricName and AlarmLevel reported by the SLO. An extension
of this implementation could consider also, for example, the range of the current value of the
metric or other criteria to make a more fine-grained decision.

DecisionEntry

String metricName
AlarmLevel level
List<Planner> planner

DecisionTable

List<DecisionEntry> entries

<<interface>>
PlannerStart

SuccessCode start()

Action

String hint
String action
Object[] params

ActionList

List<Action> actions

Figure 7.13: Objects related to the Planning component

The DecisionEntry object, as described in Figure 7.13 includes the name of the metric asso-
ciated to the received SLO, the AlarmLevel indicating if the SLO has been violated, or if it is
a preventive notification, and a list of references to Planner component that should be chosen
in this case. Once the metricName and AlarmLevel are matched, the first reference to a Plan-
ner component is executed. A Planner component implements a PlannerStart interface that
comprises a single method that is the entry point to the execution of the strategy.

The method start() from the Planner component is expected to return a SuccessCode value
indicating if the Planner component succeeded to generate a plan or if it encountered a problem,
for example, if some required input value could not be obtained, or if the strategy is not able to
produce a response in this situation. If the Planner component does not succeed, then the Strat-
egyManager invokes the next Planner component of the list until obtaining a Success response.
If all Planners are tried a default Planner that implements an empty strategy is executed, which
does not generate any actions, and returns a Null code. The order of the list defines the order in
which the entries are checked.

7.4.2 Implementation of a Strategy

Several different strategies or planning algorithms can be used to produce a list of actions to
be executed over the component, and the solution may include techniques from different areas,
like those shown in Section 3.1.3. The support provided for implementing planning strategies is
the insertion of a component called Planner that encapsulates a planning algorithm. A Planner
component must implement a server interface with a start() method that is the starting point
for executing the planning algorithm. The planning algorithm can use an interface to access the
Monitoring and obtain the value of the metrics it may require. The output of the planning algo-
rithm should be an Action object or a sequence of these Actions, each one of them representing
an action that must be executed on the hosting component.

The insertion and removal of strategy is one of the features that we see as important to ob-
tain a dynamic management layer. Through a console application we provide an interface to
interact and modify the composition of the Planning component allowing to insert and remove
Planner components based on the description of an implementing class that complies with cer-
tain requirements (basically, to support PlannerStart interface), which is described in Section
7.6.

An example implementation of a strategy that find the bound component with the higher
cost and generates an unbind action is shown in Listing 7.3. The implementation considers
as starting point the method SuccessLevel start(), and uses the Monitoring interface to collect
the cost metric of all the bound components. Then it invokes a previously known discovery
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service to obtain a replacement component and, in case it finds it, creates an action in a generic
language to trigger the change. The sending of an action is an asynchronous call with void
return, meaning that once the actions are sent, the Planner component finishes its job. The
SuccessCode return only indicates if the Planner component was able to create an action or not.
The concrete execution of the action, with its possible success or failure, is a concern of the
Execution component.

public class ReplacementPlanner implements PlannerStart
{ ...

public SuccessCode start(Object[] params) {
double maxCost = 0.0;
Component maxComp = null;
for(comp : getBoundedComponents()) {

double cost = monitoringService.getMetric("cost",comp);
if(cost > maxCost) {

maxCost = cost;
maxComp = comp;

}
}

Component replacement = findReplacement(maxComp);
if(replacement == null) {

return SuccessCode.FAIL;
}
Action action = new Action("replace(" + maxComp.getName() + ","
+ replacement.getName() + ")"); actionService.sendAction(action);
return SuccessCode.OK;

}
...

}

Listing 7.3: An implementation of a strategy to replace a bound component

Figure 7.14 shows the steps involving the reception of an SLO, the selection of a Planner that
uses the Monitoring interface to obtain the values of the metrics it needs, and that sends actions
through the Actions interface.

Strategy
Manager

alarm-service

monitoring-service

actions-service

Planner1

Planner2

PlannerN

.

.

.
action("replace(C1, C2)")

alarm(FAULT, <cost,"<=",50>, 63)

 level  plannermetric

 planner3
 planner2
 planner1

 preventive freeSpace
 cost  faulting

 faulting responseTime

➀

➁

start()

getMetric("cost")

➂

➃

➄

Figure 7.14: Steps in the Planning component while selecting an executing a strategy

7.4.3 Representing actions

Several questions remain. For example, what is the kind of Actions that can be executed, and
how can they be represented. In a similar way to the Monitoring component, whose actual capa-
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bilities depend on what the supporting platform can provide, our range of actions are limited by
the kind of actions that the GCM/ProActive middleware supports. At the level of the component
implementation, GCM/ProActive provides features for structural reconfiguration of components,
by modifying bindings, inserting and removing components, and modifying attributes of a com-
ponent. These kind of actions can be specified using an intermediate DSL language to describe
them.

Nevertheless, a Planner component does not need to speak this specific language, but just
to agree in one language that can be interpreted by the Execution component. In the example
presented in Section 7.4.2, the generated action describes a command in a language that is not
necessarily a single primitive action. The appropriate translation that must be done by the
Execution component must generate the corresponding concrete action or sequence of actions
that can be executed depending on the middleware support.

7.4.4 Additional Considerations

Given the active nature of GCM components, where each component has a thread of execution,
it is a certain possibility that in a given situation more than one SLO may trigger an Alarm
on the Planning component. The Strategy Manager, consequently may trigger the execution of
different Planner components concurrently, and this may potentially raise problems as different
planning algorithms may trigger conflicting actions. For example, one Planner component may
decide to unbind a component, and other may decide to only modify a parameter. However other
set of planning algorithms can be executed concurrently without any interference.

In our implementation we have chosen not to restrict a priori the concurrent execution of
Planner components, as we believed that this concurrency problems must be taken into account
at the moment of designing and introducing the planning algorithm inside the Planner compo-
nent. It is also possible to devise a model where the conflicting behaviour can be foreseen and
avoided in advance, however this has not been a focus of our work.

7.5 Execution

The Execution component receives a set of Action objects and translates them into concrete ac-
tions that can be run over the component-based application. The Execution component (1) trans-
lates the received Action into commands that can be executed on the application, and (2) executes
the commands by connecting to the means provided by the supporting middleware.

The composition of the Executing component is shown on Figure 7.15

Execution
Manager

Execution Component

actions-service
[actions]

Translation

Reconfiguration
Engine

actions-service
[actions]

PAGCMScript 
commands

Figure 7.15: Internal Composition of the Execution component

The Execution component is a composite that includes the following NF components:

• Translation component receives an Action object, commonly created by a Planner compo-
nent, and translates it to the appropriate executing support. The intention is to separate
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the description of Actions that may be used by the Planner components (and they may ac-
tually be different), from the way to describe these actions on the supporting platform. The
Action element, as shown in Figure 7.13, can use a Hint field to guide the Translator in
providing an appropriate representation.

• Reconfiguration Engine encapsulates an interpreter for a scripting language designed for
GCM/ProActive applications, called PAGCMScript. This scripting language allows to de-
scribe and execute actions over GCM/ProActive components, and it is also able to delegate
tasks to other components.

• Execution Manager coordinates the steps of the Execution component. Uses the Trans-
lation component to obtain commands to give to the Reconfiguration Engine and is also
responsible for synchronization, avoiding the concurrent execution of reconfiguration over
a given component that may generate inconsistencies.

In a similar way to the Monitoring component, the Execution component has one client Action
interface bound to the server Action interface of each functional component to which the hosting
component is bound, and with the same collective nature. The purpose of this is to be able to
send actions to each specific bound component, allowing to implement distributed modifications.
The decision about the locality of the execution is taken by the embedded reconfiguration engine
using the introspection capabilities of GCM/ProActive.

7.5.1 PAGCMScript

GCM/ProActive provides a scripting language called PAGCMScript to describe actions that can
be executed in GCM/ProActive applications. These actions include the management of bindings
and composition relationships, the creation, deployment, undeployment and removal of com-
ponents, the management of the life cycle of the components, and interaction with their NF
interfaces.

PAGCMScript was developed as an extension of the scripting language FScript [DLLC09],
mentioned in Section 3.1.4. FScript provides a simple means to extend the model and de-
fine primitive actions as Java classes that can be used in more complex scripts. Like FScript,
PAGCMScript relies on the FPath domain-specific language, and models a GCM/ProActive ap-
plication as a directed labeled graph where components, interfaces and attributes are nodes of
the graph, and their edges define binding and composition relationships, and the ownership of
interfaces and attributes. The extensions added in PAGCMScript include the GCM specific fea-
tures like support for collective multicast/gathercast interface, migration of components between
virtual nodes, and remote deployment and execution of components.

Using the PAGCMScript model, a component can be aware of its bindings and send actions
to external components using the Actions interface. This characteristic allows to implement
scripts that can be executed in a distributed way by delegating the execution to the involved
components.

Listing 7.4 shows an example of a replacement action defined using PAGCMScript. Once de-
fined, this action can be invoked from other scripts. The actual implementation of the primitive
methods used is a Java class that takes care of the platform details.

action replace(oldComp, newComp) {
for p : $oldComp/parent::* {

add($p, $newComp);
}
for client : $oldComp/interface::*[client(.)][bound(.)] {

itfName = name($client);
server = $client/binding::*;
unbind($client);
bind($newComp/interface::$itfName, $server);

}
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for client : bindings-to($oldComp) {
itfName = name($client/binding::*);
unbind-unit($client, $oldComp/interface::$itfName);
bind($client, $newComp/interface::$itfName);

}
copy-attributes($oldComp, $newComp);
copy-state($oldComp, $newComp);
for p : $oldComp/parent::* {

remove($p, $oldComp);
}

}

Listing 7.4: Replacement action using PAGCMScript

The Reconfiguration Engine component embeds a PAGCMScript engine able to interpret and
execute the commands, by interacting with the GCM/ProActive application.

7.5.2 Example: Replace a remote component

As an example, consider a GCM/ProActive application like the one shown in Figure 7.16, where
the Planning component of Z has issued an action to replace the slowest component in the
composition with another one. The reference of the new component has been provided as a
parameter, however the replacement action must be taken within the context of the component
that is bound to the old component.
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g

g

g

mg
H

remote-replace(G1,G4)

replace(G1,G4)

remote-replace(G1,G4)

G4g

Figure 7.16: Propagating an action to a remote component using PAGCMScript

The corresponding action on each Execution component is described in Listing 7.5.

action remote-replace(oldComp, newComp) {
server = $this/binding::oldComp;
if ($server == null) {

for externalActions : $this/binding::*[client(.)][bound(.)] {
invoke($externalActions, "remote-replace", union($oldComp, $newComp));

}
}
else {

replace($oldComp, $newComp);
}

}

Listing 7.5: Remote replacement action using PAGCMScript
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The remote-replace action is executed in each component and propagated to through the
bound components until finding one that is bound to the old component. If a branch does not find
a proper place to execute the action, it is ignored. Regarding Figure 7.16, we must remind that
all the propagation actions take place through the NF interfaces (shown in the top-side and in
the bottom-side) of each component, which are internally bound to the corresponding interfaces
of the Execution component present in each membrane, which are not explicitly shown in Figure
7.16.

It is important to mention that whereas FScript engine relies on a model of the complete Frac-
tal application, the PAGCMScript engine does not make such assumption as the application and
separate parts of it may evolve in an independent way, making costly the task of maintaining a
complete coherent view on each component. Instead, PAGCMScript uses the Fractal model to
be aware of the environment of its own hosting component and its relationships to other compo-
nents. This information can be used to trigger actions locally on the hosting composite compo-
nent, or in a subcomponent, as the composite components know their complete internal model,
or send it through one of their Actions interface to any of the bound Execution components.

7.5.3 Additional Considerations

The use of PAGCMScript allows to interact in a more simple way with a GCM/ProActive applica-
tion than by programming the Java code, which requires a better knowledge of the GCM/ProAc-
tive API. However, this does not impose that all the operations must be done through PAGCM-
Script. In fact, PAGCMScript provides an extension mechanism (itself inherited from the core
FScript) that allows to include additional methods that can be invoked from the script, and
which execution is carried on by a user defined Java class which can access the full GCM/ProAc-
tive API.

The set of actions provided by PAGCMScript comprises the structural reconfiguration of a
component-based application, the creation or removal of components, the lifecycle (start/stop)
of a component, and their deployment or undeployment over remote nodes. This set effectively
constrains the actions that can be taken by Planner components. All along the presentation of
the framework we have pushed the advantage that the component-based approach to develop
each phase allows to independently evolve each implementation. However, this advantage must
be taken with care, as this does not mean that each implementation can be developed blindly. As
in any application whose function is based on the interaction of components through interfaces,
the methods to be used and the objects used to represent SLOs and to describe Actions must
be agreed and understood by each implementation in the Analysis, in the Planning and in the
Execution phases.

7.6 Console Application

We have described the implementation of each phase of the MAPE components inside the mem-
brane of a GCM/ProActive component-based application. However, the effective insertion and
modification of the components inside the membrane is a matter that has not been addressed
yet.

According to the ideas we have pushing through this thesis, the insertion, removal and con-
nections of the MAPE components with the running application is not a matter that the pro-
grammer of the application, or at least, of its functional part, should need to take care of. In
the context of the GCM/ProActive implementation we have provided an extension of the GCM
API for component creation, and developed a basic console application that can take care of the
management of the MAPE components inside the membrane of the GCM/ProActive application,
so to the keep the functional and non-functional concerns as much separated as possible.

The GCM API defines a method to instantiate a component specifying what is called its func-
tional type (F type) and its non-functional type (NF type). The F type comprises all functional
interfaces defined for the component, and the NF type includes all the NF interfaces (also called
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control interfaces). To support the interaction with the MAPE components we have defined, the
component requires at minimum the presence of the appropriate NF interfaces. In fact, accord-
ing to our framework, a component does not need to be instantiated with the MAPE components
inside. Instead, they can be inserted and removed at runtime; however the corresponding inter-
faces must exist at the moment of instantiating the functional component.

Listing 7.6 shows one of the methods provided by the GCM API to instantiate a component
based on its F and NF type; and the method createMMType to create a Type object capable of
supporting the monitoring and management interfaces of our framework. This method uses the
functional type of a component to create a NF type that includes the interfaces for Monitoring,
SLOs and Execution according to the criteria given in Sections 7.2 to 7.5. Recall that, in the case
of the Monitoring and Execution components, one NF client interface is created for connecting to
the corresponding NF server interface of each functional component bound, and using the same
collective characteristic (either singleton or multicast). The method also needs to consider the
hierarchy of the component, as in the case of composite, additional internal NF interfaces must
be created to be able to interact with the subcomponents.

/**
* Instantiates a GCM component, according to their fType, nfType, specifying

* a content and their properties in the controllerDesc

*
*/
public Component newFcInstance(Type fType, Type nfType, any contentDesc, any

controllerDesc);

/**
* Creates a type for GCM component that can be used to provide Monitoring and

* Management capabilities (that’s why it is ’MMtype’). The type is created
according to the F interfaces * of the component, and its hierarchy.

*
*/
public Type createMMtype(PAGCMTypeFactory typef, Type fType, String hierarchy

);

Listing 7.6: GCM API for instantiating components, and provided method for building an NF
type

Once a component has been instantiated using the newFcInstance method and the NF type
obtained with createMMtype, the component can be started and executed in the usual manner.
From the functional point of view this is only place where we introduce a modification in the
component development.

7.6.1 Inserting MAPE components in the application

The insertion of the MAPE components in the membrane is carried on by the console applica-
tion, that uses the GCM API to instantiate NF components, insert them in the membrane of a
GCM/ProActive component, and bind them to the appropriate interfaces, which can belong to
the hosting (parent) component, or to the other MAPE components. Being based on the GCM
API, the Console application could be replaced by any other external application that use the
GCM API to manipulated the components inside the membrane.

The Console works with a reference on a single component, in which case this component
is the target of all the actions related to the insertion and removal of the MAPE components;
or it can work with a set of components, in which case all these components are considered as
“managed components” and every action related to the MAPE components is done over them.

The console application obtains a reference on a single component using a RMI registry look-
ing up on its “Component” interface (recall the remote objects that represent a GCM/ProActive
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component, shown in Section 6.3), read from an RMI Registry, using the command “a” (add).
Once the reference has been obtained, the GCM component is adde to the list of “managed com-
ponents” of the Console. Additional components can be added by inserting their RMI references.
The list of “managed component” can be retrieved using the “ls” command. From the list of
“managed components”, the user can select one of them as the “current” component with the
command “use”.

The Console includes a convenience command called “disc” (from “discover”) that uses the
introspection capabilities of GCM to find references on all the components (internally and exter-
nally) bound to the current component. This command avoid to manually finding and entering a
reference for each component that needs to be managed. The command executes recursively, so
that all the bound elements are reached. Once executed, the command “ls” shows the available
components, and the command “desc” (from “describe”) shows their information, describing their
name, interfaces and attributes.

The MAPE components can be inserted using the command “addMon”, “addAnalysis”, “ad-
dPlanning”, and “addExecuting” respectively. Each command instantiates the corresponding
component and its subcomponents as defined in the previous section, and inserts them into the
membrane of the current GCM component. Once inserted, the command also attempts to bind
them to the corresponding external and internal interfaces, and to the other existing MAPE com-
ponents that can be also present in the membrane. The commands “removeMon”, “removeAnal-
ysis”, “removePlanning”, “removeExec” stop and remove the corresponding components from the
membrane.

7.6.2 Interacting with the MAPE components

Once the components have been created and instantiated, the console allows to interact with
them by inserting and removing metrics, SLOs, and planning strategies.

The command “startMon” allows to start or stop the monitoring and management activity of
the MAPE components in a specific GCM component. If no GCM component is specified, it acts
over all which are register in the Console domain.

The command “addMetric” allows to instantiate a metric and insert it into the Monitoring
component (specifically in the MetricsStore), so that it can be computed and read later. The
command “removeMetric” allows to remove the metric.

The command “addSLO” allows to insert a condition that must be verified at runtime inside
the Analysis component. Once an SLO has been inserted, the command “subscribeSLO” allows
to subscribe the SLO to a metric through the Monitoring component. In that case, each update
of the metric will trigger a checking on the subscribe SLO, implementing a push mode checking.
Alternatively, the command “checkSLO” allows to specify a time after which the SLO will be
periodically checked regardless of any update to the involved metric, implementing a pull mode
checking. The command “removeSLO” allows to remove that condition.

The command “addPlanner” allows to insert planners inside the Planning component. The
command “hookPlanner” correlates a condition with an specific planner inserting an entry in the
table of the StrategyManager as described in Section 7.4 to guide the triggering of a planner.

7.6.2.1 Request Path computation

As an example, once the requestPath metric, that computes the method described in Section
7.2.3, has been inserted using the command “addMetric”, it can be invoked using the “runMetric”
command and obtain the request path of an individual request. The command requires the
identification of the initial request, and the result of the invocation is obtained using a tree
format shown in Listing 7.7, which is a textual representation of the result obtained in Figure
7.9.

Listing 7.7: Request Path delivered
Path from componentZ, for request -434886621
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Request Path from request -434886621

* (-434886621) componentA.p1.p1: client: 74828 server: 71210

* (-835071484) componentB.p2.p1: client: 68267 server: 63658

* (-2072786098) componentD.s.s1: client: 59723 server: 55995

* (-1047893631) componentA.u.u1: client: 7218 server: 3748

* (-835071483) componentE.u2.u1: client: 727 server: 425

* (-1047893630) componentA.v.v1: client: 44348 server: 40807

* (-835071482) componentF.v.v1: client: 35008 server: 29703

* (-975670994) componentG2.g.gcall: client: 21518 server: 8013

* (-124465018) componentH.w.www: client: 5268 server: 215

* (-975670993) componentG3.g.gcall: client: 7181 server: 129

* (-975670992) componentG1.g.gcall: client: 13966 server: 112
>

Further examples of the utilization of the Console commands described are presented in
Chapter 8.

7.7 Summary

In this chapter we have described the details of the implementation of our proposed framework
over the GCM/ProActive middleware. The implementation considers the particular semantics of
GCM/ProActive component-based applications, and supports the interfaces that we have defined
in chapter 5.

Although we present a particular representation for the key objects of the framework, like
metrics, SLOs, alarms and actions, the implementation has been made to be as flexible as possi-
ble while preserving a basic common interaction that allows to obtain the information required
and integrate a complete feedback control loop.

We have also provided an external, console-based application that, without being an integral
part of our framework, is able to interact with it and modify its configuration according to the
monitoring and management needs of the application, while keeping a separation between the
functional tasks and the non-functional management of the application.
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In this chapter we present the experimentation we have made with the implementation of our
framework over the GCM/ProActive middleware. The experimentation is divided in two parts.
In Section 8.1 we execute experiments to analyze the overhead incurred by the execution of the
MAPE components concurrently with the functional application. In Section 8.2 we describe from
a working point of view the use of the framework to insert and modify a set of MAPE components
into a concrete application, showing the practicality of our proposition.

8.1 Evaluations

8.1.1 Execution Overhead

We have executed a sample application with several components, similar to that shown in Figure
7.7. Each execution performs a distributed computation through all the components to build
a return message, so that each execution generates a communication that ultimately reaches
every other component. We run a repetition of n messages in two versions of the application:
one with no MAPE components inserted, and another with a version of each MAPE component
inserted in all the membranes. The Monitoring component computes metrics related to response
time; the Analysis component includes an SLO that compares the response time in a push mode
(subscription) upon each update of the respTime and, in case it is bigger than 1 second, it sends
an alarm to a planner component. The planner only checks the last value obtained for the
respTime metric from the Monitoring component, but does not generate actions. In order to
isolate the execution of the application, in this experiment all the components are deployed in a
single node.
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#msgs Normal (sec) w/MAPE (sec) Diff. %Overhead
1000 6.983 7.999 1.016 14.550
2500 17.202 19.293 2.091 12.157
5000 34.392 39.179 4.787 13.920

10000 68.567 77.553 8.986 13.105
20000 140.377 158.907 18.53 13.200

Table 8.1: Execution Overhead in non-distributed application

The times obtained for each execution depending on the number of requests, and the overhead
obtained for the total execution is shown in Table 8.1.

After some variations, we observe that the overhead incurred stabilizes around 13% of the
initial time. Although it seems important, we must highlight that this case represents one of
the worst cases of an execution, as the only thing that this application does is to send requests
to other components, while little work is done by each individual service. In a more general
situation, an application would be expected to do some other activity that only sending requests.
However, this experiment allows us to test the behaviour of our framework implementation
under a high load and still obtaining correct results.

8.1.2 Communication Overhead

In this experiment we use a distributed version of the application, where each component is
deployed in a different node. We expect that the biggest part of the time spent by the application
be effectively the communication time with each other.

In the following setting, the “Normal” column shows the execution time without any MAPE
component inserted, and the “w/MAPE” columns shows the execution with all the MAPE com-
ponents inserted and running in all the membranes, and in the same node of each functional
component. Then, we repeat the execution with the same set of MAPE components as described
in the previous example. The results are shown in Table 8.2.

#msgs Normal (sec) w/MAPE (sec) Diff. %Overhead
1000 29.661 33.687 4.025 13.571
2500 72.199 82.184 9.985 13.829
5000 138.722 156.741 18.019 12.989

10000 271.452 314.203 42.750 15.748
20000 539.263 624.274 85.011 15.764

Table 8.2: Execution Overhead in a distributed application with MAPE components executing
in the membrane of the functional components

In this case, the overhead reaches around 15% of the “not managed” execution time. This is
not a big increment with respect to the previous situation, while the amount of network com-
munication is bigger. Once again, we must mention that this particular experiment reflects a
situation where the components spent most of the time sending and receiving requests, which
consequently triggers reactions over the application. The node where each component runs must
support the execution of both the original functional node, and the activity of additional NF com-
ponents.

Overall, the insertion of the MAPE components in this implementation implies a bigger load
in the execution of the managed component, which is natural. In a worst-case scenario, the
overhead incurred does not account for more than 15% of the not managed execution. This mea-
sure however, may not be completely accurate, as the actual overhead incurred by the MAPE
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components may depend on many additional factors. For one, the specific logic applied to the
metrics implementation, and to the planner strategies may require much more additional pro-
cessing. Moreover, the planner strategy may require (it is not forbidden to) temporarily stop the
functional execution of the component if some computation needs to be performed in an isolated
way.

Another factor is the supporting implementation. In our case we have conducted our experi-
ments over a distributed environment supported by the GCM/ProActive middleware. This par-
ticular implementation profits of asynchronism to allow the concurrent execution of the MAPE
components. Each implementation of the framework, however, may profit of their particular
characteristics and optimize the implementation.

8.2 Example: Tourism Planner

In this section we aim to illustrate the functionality that can be achieved with our framework.
We present an example service-based application, initially designed without monitoring and
management capabilities. We show how, through the use of our framework we can add monitor-
ing and management features to the application and introduce some autonomic capabilities.

8.2.1 Context: A Tourism Planner Application

The example considers a tourism office who has composed a smart service to assist visitors who
request information from the city and provides suggestions and planning of touristic activities.
The application considers that some of the services can be provided and hosted locally, while
others are remotely provided by third party applications, some freely available, and some that
require a payment.

The local services include a database of seasonal activities maintained by the tourism office;
a composer engine that is able to produce a document in PDF format; and a printer service. The
externally provided services comprise a weather prediction service, a banking service that allows
to process payments, a mapping service to compute itineraries and provides location services,
and a set of attraction services, where each one of them represents an entity that provides tickets
to events or manifestations. We assume for simplicity that there exists a common interface
through which these attractions can be contacted and accessed, though if it was not case an
intermediate adaptor component can be used.

The application receives requests from a front-end component that allows interaction with
the user. The user selects a range of dates and other preferences, and the Tourism Service pro-
vides a list of available events and attractions using both the external attraction providers, or the
database of local events. The proposition can also be guided according to the user preferences,
f.e., by price range, location or weather conditions. Once the user has made up his selection, the
Tourism Service allows him to pay for any tickets, if needed, using the Bank Service and later
it generates a PDF document including the information of his activities selected, complemented
with a weather report and maps showing the itineraries. Optionally the document may be sent
via email.

The overall design of the application is shown in Figure 8.1. The composition relationship
intends to illustrate the fact that some services are locally developed and, consequently, belong
to the same composite Tourism Service, while the other services are externally provided and are
accessed through references of the composite.

The application is initially designed without any activity related to monitoring or manage-
ment. However, in order to be able to insert some MAPE components later, it is necessary that
the required interfaces be previously declared. In the context of our implementation, this is
achieved by using the createMMtype() method as mentioned in Section 7.6. The equivalent de-
sign using the GCM notation is shown in Figure 8.2 for the Tourism Service composite. Once
a component has been created using the NF Type provided by the createMMType() method, the
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Figure 8.1: Scenario. SCA description of the application for tourism planning.

components are created with NF Type that can support the monitoring and management fea-
tures, however they are not yet bound to any concrete component as the membrane is initially
empty.

Manager
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Tourism Service
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front-end

Figure 8.2: GCM description of the Tourism Service composite. NF Interfaces are available but
no NF Component is in the membrane

In the following section we describe steps oriented to provide monitoring and management
features to the application, and compose some autonomic behaviours.

8.2.2 Monitoring the response time of the composite

Initially, the application has no activity related to monitoring or management. However, some
users report long waiting times for obtaining responses, which ultimately lead them to leave
the site. An initial step to solve this issue is to insert monitoring components in all the locally
hosted components and determine where is the time spent. Using the Console application, a
basic Monitoring component is attached to the Tourism Service composite and all its internal
subcomponents.

Listing 8.1: Adding existing components to the Console
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+-------------------------------------------------------------------------+
| REconfigurable Monitoring and Management of Services -- Console |
+-------------------------------------------------------------------------+

> a rmi://cobreloa.inria.fr:6699/EntryPoint
Looked-up [TourismService] @ [rmi://cobreloa.inria.fr:6699/EntryPoint]

> use TourismService
Current: TourismService

> disc
Discovering from component TourismService
... ... ...
... ... ...

> ls
TourismService
Manager
EventsDB
Composer
Email
SMS
WeatherService
BankingService
Atracction1
Attraction2
Attraction3
MappingService

>

Listing 8.1 shows the initial steps for adding an application to the domain of the Console. The
application registers a reference to one of its interfaces in a defined RMI registry, in this case
under the name EntryPoint and the Console uses the command ’a’ (add) to lookup for a GCM
component in that location and adds it to the list of managed components. Once selected with
the command ’use’, the manager can use the command ’disc’ (discover) to find all the components
bound to the TourismService and add them to the set of managed components. The command
’disc’ uses introspection to find out references on all the reachable components, this is, the set
of components bound to TourismService (both internal and external), and those can are bound
to them. This is a necessary step as components may be distributed and there is no single
component that contains the information of all the application.

Listing 8.2: Inserting Monitoring Components

> addMon
Adding monitoring components to TourismService ...
Adding monitoring components to Manager (internal) ...
Adding monitoring components to EventsDB (internal) ...
... ... ...
Adding monitoring components to MappingService (external) ...
Enabling monitoring bindings on component Tourism Service ...
Enabling monitoring bindings on component Manager ...
Enabling monitoring bindings on component EventsDB ...
... ... ...
Enabling monitoring bindings on component MappingService

> startMon
Starting monitoring ...
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Monitoring Components started.
>

The insertion is realized through the command ’addMon’ (add Monitoring), as shown in List-
ing 8.2. The ’addMon’ command inserts the generic Monitoring component provided by our
framework in the membrane of all the managed components and performs the NF bindings
needed to connect the Monitoring components of the related components. Finally the command
’startMon’ initiates the work of the Monitoring components.

Figure 8.3 shows the Tourism Service composite once the Monitoring has been inserted in
its membrane, and in each one of its subcomponents. The NF bindings are shown as solid lines
inside the membrane, and as dashed lines in the functional part.

Manager

Monitoring

metrics

Monitoring 
Service

Managed Tourism Service

Events DB

Composer Email

SMS

front-end attractions

weather-service

payment-service

map-service

Figure 8.3: GCM description of the Tourism Service composite, once the Monitoring component
has been inserted in the membrane of all components, and its NF Interfaces are bound

The Monitoring components are started, however no metric is being computed at this mo-
ment. In order to obtain information about the response time of the components, we introduce
the metrics respTime and avgRespTime; the first metric computes the response time found in a
specific request, and the second computes the average response time of all request in a specific
interface.

Listing 8.3: Inserting metrics in Monitoring components

> addMetric TourismService respTime respTimeTS
Metric respTimeTS (type: respTime) added to TourismService

> addMetric TourismService avgItfRespTime avgItfTimeTS "reqs"
Metric avgItfTimeTS (type: avgItfRespTime) added to TourismService

> runMetric TourismService respTimeTS 1131284372
TourismService.avgInc1 = 56245

> runMetric TourismService avgItfTimeTS
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TourismService.avgInc1 = 26351.6

> lsMetric TourismService
Metrics in component [TourismService]

avgItfTimeTS (type: avgItfRespTime)
respTimeTS (type: respTime)

>

Listing 8.3 shows the steps for inserting the mentioned metrics in the TourismService com-
ponent. The command “addMetric” allows to insert a metric from a library of available metrics,
specifying the type of the metric, an instantiation name, and a set of optional constructor pa-
rameters. In this case, the metric respTime is instantiated as respTimeTS and does not require
constructor parameters. The metric avgItfRespTime is instantiated as avgItfTimeTS, parame-
terized with the interface named “reqs”. The instantiation name is required as to differentiate
the inserted metric from other that may have the same type, but different initial parameters,
f.e. the avgItfRespTime metric for measuring the time of another interface. Similar steps should
be repeated for each component where the metrics are required.

The command “runMetric” in Listing 8.3 executes the indicated metric and allows to specify
execution parameters for it. In the case of respTimeTS the indication is the rID of a specific
request. The list of requests served by a component and, in particular, their rIDs can be obtained
by using the “l” (logs) command on a component.

By using the Console, the manager of the application can check if the average response time
of the application is inside a reasonable value or not. If not, he can use the respTime metric
to obtain the response time of a particular request, however this only gives information about
the total time and does not provide much insight to find a component that can be mentioned as
“responsible” for the time spent. It is also possible for the manager to ask the respTime metric
on other components, however it would require for him to analyze the logs of each component to
find out the appropriate requests to ask for.

A more convenient solution can be obtained by inserting the requestPath metric in each com-
ponent, as shown in Listing 8.4. From here, the manager can see a decomposition of time spent
by a request and can identify the component where the longest part of time was spent.

Listing 8.4: Request Path computation
1 > addMetric TourismService requestPath rp
2 Metric rp (type: requestPath) added to TourismService
3 ...
4 > addMetric MappingService requestPath rp
5 Metric rp (type: requestPath) added to MappingService
6
7 > runMetric TourismService rp 1131284383
8 Path from TourismService, for request 1131284383
9 Request Path from request 1131284383

10 * (1131284383) TourismService.reqs.buildDoc: client: 7943 server: 7646
11 * (-516789329) Manager.events.getEvent: client: 410 server: 398
12 * (-516789328) Manager.weather.getWeather: client: 2224 server: 2118
13 * (1131284384) TourismService.weather.getWeather: client: 2011 server: 1841
14 * (-516789327) Manager.attraction3.getTicketData: client: 3019 server: 2867
15 * (1131284385) TourismService.attraction3.getTicketData: client: 2860 server: 702
16 * (-516789326) Manager.composer.buildDoc: client: 5066 server: 5002
17 * (1278875256) Composer.mapping.getLocation: client: 3200 server: 3109
18 * (1131284385) TourismService.mapping.getLocation: client: 3006 server: 2955
19 * (1278875257) Composer.email.send: client: 1434 server: 1137
20 >

The tree obtained in Listing 8.4 (all time are given in msec.) shows that the complete invo-
cation took almos 8 secs. (line 10: client perception of the invocation of the method buildDoc on
the reqs interface of component TourismService. If we analyze the first level of the invocations
generated by this call (line 11, 12, 14 and 16), we can see that the invocation on the Composer
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component (line 16) took the larger slice of time respect to the other invocations. If we look
deeper in the invocations made by Composer (lines 17 and 19), it is possible to see that the call
to the Mapping component was the longest of them. However, another inspection can show,
thanks to the fact that we have collected the time from both the client side and from the server
side, that the invocation to Attraction3 (line 15) took 2.860 secs. from the client side, but the
service reported to have taken only 0.702 secs. to obtain the response, which could point to a
latency of almost 2 secs in that invocation, which is high compared to the latencies obtained in
the other invocations to external services (lines 13 and 18).

8.2.3 Automating SLO Monitoring

In the current state, a manager is able to analyze the response time of an application and ob-
tain some feedback. However, this still requires a human administrator to query the needed
information from the application.

The application can be improved by inserting an automated analysis. The next step inserts
the following additional components:

• An Analysis component that includes an SLO that checks the avgRespTime metric and
raises an alarm when this reaches a certain threshold.

• A Planning component that includes a strategy that sends an email notification to the
manager of the application.

The first step is to insert the Analysis and Planning components. As this behaviour is only
required in the TourismService component, it is not necessary to attach them to the other com-
ponents, as shown in Listing 8.5.

Listing 8.5: Adding Analysis and Planning components
> addAnalysis TourismService
Adding analysis components to TourismService ...

> addPlanning TourismService
Adding planning components to TourismService ...

Secondly, it is necessary to add the SLO description and a very simple planner that upon an
alarm, notifies a human manager by sending an email.

Listing 8.6: Inserting SLO and Planner elements
> addSLO TourismService sloART avgItfTimeTS lowerThan 20
Adding SLO <avgItfTimeTS, lowerThan, 20> to TourismService ...

> subscribeSLO TourismServce sloART avgItfTimeTS
Subscribing SLO sloART to metric avgItfTimeTS ...

> addPlanner TourismService planningEmail PlanningEmail
Adding planning component planningEmail (class: PlanningEmail) to TourismService

> hookPlanner TourismService avgItfTimeTS FAULT planningEmail
Adding entry <avgItfTimeTS, FAULT, planningEmail>

Listing 8.6 shows the different steps mentioned. An SLO limiting the maximum average
response time acceptable to 20 sec. is added, and subscribed to the metric avgItfTimeTS in order
to be checked each time that the metric avgItfTimeTS is updated, forcing a push checking mode.
The metric is updated, in the Monitoring component, each time that a new request is served,
according to the metric implementation. In the Planning component, a new component that
implements a strategy is inserted. What is needed is the class that implements the logic of the
planning strategy, and in this case it is a very simple one that sends an email to a predefined
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email address. Finally, an entry is inserted in the decision table of the Planning component
that defines that upon a faulting SLO regarding the metric avgItfTimeTS, the planner called
“planningEmail” should be invoked.

With this setting a simple autonomic response is attached to the TourismService that relies
upon a single check to decide on an action.

At a later step, we can add a checking that gives more information about the fault, by com-
puting a request path of the last request served and included in the report. The steps require to
remove the previous planner component and replace it for a new one that implements the new
logic, and they are shown in Listing 8.7.

Listing 8.7: Replacing the Planner component

> removePlanning TourismService planningEmail
Removing planning component planningEmail from TourismService...

> addPlanner TourismService planningEmailReqPath planningEmailReqPath
Adding planning component planningEmailReqPath
(class: PlanningEmailReqPath) to TourismService

> hookPlanner TourismService avgItfTimeTS FAULT planningEmailReqPath
Adding entry <avgItfTimeTS, FAULT, planningEmailReqPath>

An important step is to add the entry in the association table of the Planning component,
pointing to the new planner. We did not explicitly removed the old entry, however the Strategy
Manager evaluates the entries in the order they are inserted and, if one fails, in this because the
destination planner is not available anymore, then the next entry is tried.

8.2.4 Autonomically replacing a service

The application can be improved by automating the analysis. So far, the control loop is not
complete as the last step is just a notification to a human administrator who should decide on
an action.

The next improvement involves an automated way to deal with the problem. The planner
component is replaced with another one that is capable of executing an action over the applica-
tion.

The first step is to replace the existing planner component by another that executes the
following strategy:

• Get the requestPath metric from the Monitoring component.

• Analyze the obtained tree and identify the component C1 where the biggest share of time
is spent.

• Use a discovery service to obtain a replacement component C2 that provides the same func-
tionality of C1, with a compatible interface.

• Send as output the sentence “replace(C1, C2)”

This description makes some assumptions. First, it assumes that discovery service is capable
of finding an appropriate replacement component in a relative short time. For our case, we
have provided a set of possible replacement components for each interface. Also, there is no
guarantee that a discovery service is capable of finding a component with compatible interface.
Most of the time different services with the same functionality are available but with different
interfaces. The problem of automatically adapting one interface to be used with another existing
one is major research topic itself, not addressed in this work. Second, there is also no guarantee
that the service found allows to solve the response time problem. In practice, strategies like
those mentioned in Section 3.1.3 consider the probable benefit of a service before selecting one
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specific component. In our case, this would require that the Planning component be capable of
contacting the Monitoring interface of the replacement component and obtain previously stored
(historical) information that allows to estimate that the performance of this component will be
better than the current one. Finally, even if a component with better response time is found,
this does not guarantee that the problem will be solved, neither that this will be the optimal
solution. It is, indeed, possible that the replacement of another can have a better impact on the
overall performance. However, the objective of this example is to illustrate that a new planning
component that considers the current situation of the application can be inserted and carry on a
modification action.

Next step is to properly interpret the sentence generated by the planner component. In our
implementation we use the PAGCMScript language to execute actions over the GCM/ProActive
application. We insert an Execution component in each one of the managed components, and
bind them to the corresponding Planning component, and between them in a similar way to the
Monitoring components.

The PAGCMScript engine embedded in the Execution component is capable of interpreting
the sentence sent by the Planning component. In fact, the command “replace(C1,C2)” is an action
defined in PAGCMScript that is capable of propagating the action until the component over
which this action must be applied is found, like shown also in Section 7.5.2. The sequence of
commands to replace the planner component and insert the Execution components is shown in
Listing 8.8.

Listing 8.8: Planner update, and insertion of Execution component

> removePlanning TourismService planningEmailReqPath
Removing planning component planningEmailReqPath from TourismService...

> addPlanner TourismService planningReplacer planningEmailReplacer
Adding planning component planningReplacer
(class: PlanningReplacer) to TourismService

> hookPlanner TourismService avgItfTimeTS FAULT planningEmailReplacer
Adding entry <avgItfTimeTS, FAULT, planningReplacer>

> addExec
Adding execution components to TourismService ...
Adding execution components to Manager ...
Adding execution components to EventsDB ...
... ... ...
Adding execution components to MappingService ...
Enabling execution bindings on component Tourism Service ...
Enabling execution bindings on component Manager ...
Enabling execution bindings on component EventsDB ...
... ... ...
Enabling execution bindings on component MappingService

The flow of the autonomic action is shown in Figure 8.4. In the figure, the bindings related
to the Execution components are shown, as solid line inside the membrane, and as dashed lines
in the functional part. The bindings related to Monitoring are hidden for clarity, but they are
present in the application as shown in Figure 8.3.

This example shows a complete autonomic control loop that considers the global state of the
application to determine a response, and is able to propagate it at the appropriate component.
It is worth to mention that this global autonomic loop considers information obtained from the
Monitoring components of each component of the application, that is used by the Analysis and
Planning components of the TourismService composite, where the decision is taken. Both Analy-
sis and Planning components are inserted only in the TourismService composite. Once a decision
is made, the action is propagated to the Execution components of each functional component.
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Figure 8.4: Flow of an autonomic action in the TourismService component. Some interfaces and
bindings not related to the flow are hidden.

8.2.5 Inserting local components

One feature of the framework is to allow the insertion of local control loops according to the needs
of the application, which not necessarily require to involve all the elements of the composition.

A modification on the application is inserted and a third component to send the final docu-
ment is added to the Composer component. In this case a Twitter component that publishes a
short link about the itinerary that has been created. As with the rest of the components, the
Twitter component must be created with the necessary NF interface using the createMMType()
method. However, when inserting the Twitter component into the TourismService composite, and
binding it with the Composer component, the NF bindings of the Composer are not automatically
updated, as this is not a concern of the composer of the functional part.

Suppose that the sender components (Email, SMS-2, and Twitter) have failures or timeouts.
A particular autonomic task can be inserted related to this three components for stopping using
one of them once a certain number of failures have been detected.

For this, a Monitoring component must be inserted in the new component, and the required
NF bindings must be made. From the Console, this is possible by invoking the “addMon” com-
mand both in the Composer component and in the new inserted Twitter component.

Listing 8.9: Inserting Monitoring on new components

> addMon Twitter
Adding monitoring components to Twitter ...
> addMon Composer
Adding monitoring components to Composer ...
Enabling monitoring bindings on component Composer ...
> startMon Twitter
Starting monitoring ...
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Monitoring Components started.
>

Listing 8.9 shows the steps for inserting the Monitoring component on the Twitter and for
updating the NF bindings. In fact, the bindings for the Email and for the SMS-2 components
already exist. The command “addMon” over the Composer component updates the bindings if
required and creates the new one (for the Twitter component).

For accounting the number of failures, a metric called failCounter is inserted in the three
Email, SMS-2 and Twitter components. This metric increments a counter each time that the
component receives an error code while performing its task. In the Composer component, an-
other metric is inserted called failAggregator. This metric uses the Monitoring interfaces of the
three connected components to subscribe to the failCounter metric, and maintains a counter
with the maximum number of failures among the three of them.

In order to insert an autonomic action, an Analysis component and a Planning component
are added to the Composer component. The Analysis component includes an SLO that describes
〈failAggregator, <, 5〉. This way, the Analysis component will raise an alarm when the any of the
three components reports at least 5 failures. The Planning component requires an associated
planner that asks for the value of the failCounter of each component and determines the com-
ponent Cs with more failures, and issues a sentence “disable(Cs)”. For executing this action,
and Execution component is attached to the Composer component. The PAGCMScript engine
expands the sentence to an unbind action for the indicated component. Figure 8.5 shows the
control loop inserted in this subset of components, which works concurrently and independently
from the more global control loop described in the previous section.
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Figure 8.5: Autonomic control loop related to the number of failures in a subset of components.
This loop is inserted only for a subset of components.

8.2.6 Inserting additional SLOs

The condition inserted in the Tourism Service component is not the only one that can be. One
of the objectives is to able to handle several concurrent conditions, provided that they do not
generate conflicting situations.

Suppose the manager of the application needs to limit the maximum cost of maintaining its
application. As some services are externally provided, some of them may require a payment,
and some others may be available for free. Among those that require a payment, they may have
different models for charging, so a different metric to compute the cost of using each service
must be provided.
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In this case, assumed the different models of each service, we introduce a metric named cost
for each service. The implementation of each metric is different in each component (they are
made from different classes that extends Metric<Double>), but they share the same name.

• The WeatherService features a monthly subscription that allows an unlimited number of
requests. In this case, the metric cost counts the number of requests served during the
month and returns an estimated cost per request, which will be used to compute the final
cost for the end-user.

• The PaymentService charges an amount proportional to each transaction made. We insert
a metric cost that accumulates the cost incurred by each request and returns an average
cost according to the number of requests processed.

• The Attraction2 charges a fixed amount per request. We insert a metric cost that returns
this fixed amount.

• The rest of the services are free. Their metric cost belong to the same class, and return 0
on each call.

Given these metrics the computation of the metric cost in the Monitoring component of the
TourismService can be made as shown in Listing 8.10. In this case, it is possible to see that,
though the metrics for each external service are indeed different, by inserting them through
our framework we provide a uniform way to access them. If the cost model of one of the exter-
nal service would change, then it would be necessary to change only the associated metric in
the involved component, while the cost metric in the MonitoringService component remains the
same.

public class CostMetric extends Metric<Double> {
...
public Double calculate(final Object[] params) {

double cost = 0.0;
Interface[] externalMonitors = GCM.getClientInterfaces(

metricStoreRef);
for(Interface external : externalMonitors) {

MonitoringService mon = (MonitoringService) external;
cost = cost + mon.getMetric("cost");

}
return cost;

}
}

Listing 8.10: Implementation of the cost metric for the TourismService component

Using this metric, the next step is to insert an SLO that periodically checks if the cost per
request reaches a threshold: 〈cost, <, 2.0〉. This SLO will be associated to a planner and Execu-
tion components that attempt to replace the component with the higher cost by another found
through a discovery service.

Listing 8.11: Adding a new SLO
> addSLO TourismService sloCost cost lowerThan 2.0
Adding SLO <cost, lowerThan, 2.0> to TourismService
> checkSLO TourismService sloCost 1m
Enabling periodic checking of SLO sloCost at 1 minute ...
> addPlanner TourismService planningCost PlanningCost
Adding planning component planningCost (class: PlanningCost) to TourismService
> hookPlanner TourismService cost FAULT planningCost
Adding entry <cost, FAULT, planningCost>
>
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The new SLO is inserted and associated to a planner component called planningCost as
shown in Listing 8.11. The planningCost component does a similar work as metric CostMetric
(Listing 8.10), but it also identifies the component with the higher cost and uses the discovery
service to find a replacement. Figure 8.6 shows in bold lines the requests made by the Monitoring
component of TourismComponent in order to compute cost and generate a replacement action.
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Tourism Service

Events DB

Composer Email
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Execution 
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Monitoring 
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MonitoringAnalysis

Planning
Execution . . .

. . .
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Figure 8.6: Autonomic control loop related to the number of failures in a subset of components.
This loop is inserted only for a subset of components.

Once again as mentioned in the previous case, the proposed strategy may not be the most
convenient. However, it shows that two different conditions, and consequently two different
control loop managing different actions can coexist. What has not been mentioned is how to deal
with conflicting actions. Indeed, it is possible that once the replacement action be executed and
the WeatherService is replaced by WeatherService-2, the new component has a response time
that violates the SLO 〈avgRT, <, 15〉, as the execution of the planner component planningCost is
different and independent to that of the coexisting plannerReplacer. It is one of the features of
the component based approach that both planner components can coexist and possibly execute
concurrently, completely unaware of each other. However, it would be a responsibility of the
programmers of the planners to check that this concurrent execution is safe. A simple solution to
avoid this situation can be to avoid concurrent execution and do not invoke a planner component
when another is executing. This kind of behaviour should be inserted by the StrategyManager
(inside the Planning component, recall Section 7.4. Although it is a certain possibility, in our
experiments we have chosen not to do like this in order to show that concurrent execution is
possible, and illustrate the capabilities of the framework. A better solution would be to automate
the decision about which executions of planner components are possible. One alternative is
to rely on additional declaration from the programmer side to help the Strategy Manager to
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automatically decide if it allows a concurrent execution or not. However, we think that this
decision is hard to generalize and deserves a bigger amount of research to find an appropriate
means to represent this information without incurring in a big burden for the programmer.

8.2.7 Providing a Self-healing response on a service

The examples presented deal mostly with issues related to the implementation of the service.
However, as mentioned in Chapter 4, a service can be affected in several levels, in particular in
the infrastructure level.

Consider that the manager of the application has the services that are internal to the Tourism-
Service composite locally hosted on an on-premises infrastructure. Upon a high demand, the
local infrastructure may be insufficient to handle the load and, consequently, the manager de-
cides to host the components in an external IaaS cloud. For the manager to know details about
the hosting infrastructure, we insert a metric called nodeInfo in each of these components. The
metric nodeInfo collects information about the hosting infrastructure (CPU type, host name, IP
address, . . . ) in a NodeInfo object. This metric is not attached to any event in particular, as it
is not related to a functional event from the component, so the data is obtained in a pull mode.
The way to obtain this information, this is, the implementation of the metric, depends largely
on the infrastructure support. In our implementation, the GCM/ProActive middleware provides
two JMX MBeans called ProActiveRuntimeWrapperMBean and NodeMBean that allow to obtain
information about deployment details, the hosting virtual machine, the virtual node used, and
the infrastructure characteristics.

An event that can affect the behaviour of the application is the unavailability of some compo-
nent due, for example, to a network problem or some event affecting the remote infrastructure.
A simple means to obtain the availability of the inner components is to insert an availability
metric in the Monitoring components. Each component that has a client binding to another
one implements this availability metric that checks periodically the availability of the bound
component using heartbeats. Using the heartbeats and the uptime, it computes an availability
percentage.

Given this metric, an SLO that restricts this limit can be inserted in each one of these compo-
nents to ensure 〈availability, >, 0.99〉. This SLO is associated to a planning strategy that intends
to deploy a new copy of the component in another prefixed infrastructure. The planner compo-
nent only requires to generate a PAGCMScript sentence indicating “migrate(C, dest)”, where C
is the component to be migrated, and dest indicates a predefined hosting infrastructure.

With this setting, each of the subcomponent of TourismService implements a local autonomic
self-healing control loop where they check the availability of a service that they use and, upon
an availability problem they trigger a migration to another node.

8.2.8 Providing a Self-optimizing response on a service

When considering a set of nodes available for executing services, a self-optimizing behaviour can
be implemented by considering the performance of the nodes. Instead of relying only in response
time, this example attempts to use infrastructure information to guide a better utilization of
nodes.

The criteria to use will be the CPU load, and the memory available on each node. For mea-
suring this, two metrics are added to each component: cpuLoad and freeMem, to measure CPU
load and available memory, respectively. The implementation of these metrics depends highly
on the details of the machine used, however for our implementation we rely on the information
provided by the GCM/ProActive middleware.

The Analysis component will use the same SLO previously inserted, which is related to the
avgItfTimeTS metric. The modification will be at the level of the associated planner component.
For this, the existing plannerReplacer component is removed and replaced by another planner
called plannerMigration, associated to the same existent SLO 〈avgItfTimeTS, <, 20〉.
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The plannerMigration component uses the Monitoring component to find the values of the
metrics cpuLoad and freeMem on each subcomponent and determines the one that is more
loaded. In this case, the criteria is to find the component whose hosting node has the biggest cpu-
Load value and then the lowest freeMem. Having found this node, the plannerMigration locates
a new available node (a new instance from a cloud environment) and migrates one component
residing in that node to the new obtained instance. The output is, thus, a sentence “migrate(Cm,
newInst)”, where the component Cm, randomly selected among the component running in the
loaded node, is the one chosen to migrate to the new node indicated by newInst.

As in the previous example, we have made some assumptions that facilitate the overall im-
plementation of the planner components, but allowing to show that a section of a running auto-
nomic control loop can be modified in a transparent form for the rest of the components. How-
ever, transparency does not mean that any planner component can be replaced by any other. If
no care is taken, it is possible that the new instance obtained require a cost that may increase
the overall cost of the application, and possibly cross the threshold defined by the metric that
measures the cost per request: 〈cost, <, 2.0〉. This simple action may trigger another autonomic
response handled by the planningCost component, which may increase the value of the avgRe-
spTime and triggering another autonomic response. Easily it may happen that the application
enters in a cycle of autonomic response triggered by each other. The analysis here is that the
design of autonomic response is not an easy task and if care is not taken, it is not hard to get
into a livelock situation like the one described. Although it is not a part of this research work
to provide a solution to those situations (which is by itself a broader research area), we think
that the separation of activities that we provide through our framework allows a more flexible
development of autonomic actions, and facilitates their integration.

8.3 Summary

In this chapter we have presented our evaluation of the performance and feasibility of the imple-
mentation that we provide of our framework, in the context of the GCM/ProActive middleware.
We have divided the evaluation in two steps: (1) we perform experiments that show that the
execution of the NF MAPE components in the membrane of a GCM/ProActive application that
delivers a high number of requests, and consequently, triggers a high set of events that must be
analyzed by the MAPE components, does not harm the overall execution of the functional part
of the application, even when the overhead is certainly measurable. Indeed, our implementa-
tion relies heavily on the asynchrony and in the separation of activities in each GCM component
in order to execute monitoring and management task in parallel to functional execution of the
application. However, particular middleware support, or other SCA compliant platform may
introduce particular way to optimize the implementation. (2) We illustrate through a concrete
example, how the MAPE components can be inserted and replaced inside a running application
in order to better deal with problems that may arise, and allowing the application to adapt to en-
vironmental conditions by the way of inserting autonomic control loops where they are required,
and by modifying the composition of this loop.
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This chapter describes the conclusions obtained during our work, and presents the perspec-
tives and research paths that we have identified.

9.1 Contribution

In this thesis we have presented a framework intended to improve at runtime the adaptability
of service-oriented applications that are built around a component-based approach. The frame-
work proposed is itself designed around a component oriented approach that encapsulates the
different phases of the MAPE autonomic control loop, Monitoring, Analysis, Planning, and Ex-
ecution and binds them through predefined interfaces. Our proposition allows to connect them
in a logical way at runtime and, in this way, to provide an implementation of the monitoring
and management tasks over a service-based application that can be reconfigured at runtime
enabling the introduction of autonomic behaviour to the application.

We have acknowledged the difficulty of providing effective autonomic tasks. In fact, com-
monly autonomic tasks are proposed as global, general goals over an application, however when
they need to be applied, they must be subdivided in smaller more simple tasks that can be ex-
ecuted in the appropriate place of the application, and interact in a meaningful way to achieve
the overall goal. This subdivision is not evident at all, and it is not a main concern of our work to
solve this problem; however we believe that our proposition helps to provide an implementation
of autonomic behaviour in several ways:

• By providing a separation of phases of the autonomic control loop we allow to develop
the logic for computing metrics and evaluating actions in separate ways. This facilitates
the implementation of adaptation strategies, by means of the planner components, as the
developer does not need to provide the access to the specific metrics that it may require,
because this is encapsulated in the Monitoring component, although he/she needs to know
the appropriate metric name to ask for it. The Monitoring component implements the
specific logic for computing the metrics, which may depend on the possibilities available by
the supporting infrastructure.

• By separating the phases of the MAPE control loop, we do not force to have complete closed
loops over all the components. This way, a component may only have, f.e., Monitoring and
Execution components, and avoid the insertion of the other MAPE components if they are
not locally needed.

• By attaching the control loop to each component involved, we allow to execute actions
and take decisions close to the specific component. The advantage is that the analysis and
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planning phases (and consequently the additional components inserted) can react in a more
local way, and does not need to propagate the collected information to a global centralized
manager.

• By allowing the insertion of multiple metrics, SLOs, or planning strategies in the corre-
sponding components, we allow the insertion of several MAPE loops that can execute in
parallel, possibly including the same set of components, and consequently allowing inde-
pendent developments, and more efficient executions. Nevertheless, this advantage must
be taken with care, as the possibility of having autonomic tasks that execute in parallel
over non-empty intersections of components, brings the risk of the occurrence of contradic-
tory or inconsistent actions over the application.

• By inserting the required MAPE components at runtime instead of forcing their creation
from the initial design time, and allow to plug them in, or plug them out as needed, the
framework can be less intrusive in the addition of monitoring and management tasks (1)
because we can insert the MAPE components only in the components that need them, and
(2) because we can remove them if they are not needed anymore.

We have provided an implementation of our framework over the GCM/ProActive middle-
ware, profiting of the distributed and reconfigurable component model that it supports. Indeed,
the reconfiguration capability turns to be very important for being able to insert and remove
components of our framework at runtime. At the same time the ability to separate the defini-
tions for the functional content and for the non-functional part turned as a convenient way to
improve the separation of concerns in our approach, as the developer of the functional content
does not need to take care of the implementation of the management tasks. Most SCA runtime
implementations do not allow a dynamic reconfiguration of an application (FraSCAti being the
most notable exception), nor do they allow the addition of monitoring and management tasks at
runtime. We believe that this thesis shows the utility of having such kind of approach to improve
separation of concerns, and facilitate the development of more adaptable service compositions.

9.2 Perspectives

The possibilities of further research after this work are far from being over. The implementation
of autonomic strategies itself is an active research area. We highlight the following points as
promising research directions for future work.

• We think this framework can provide a good support for the development of collaborating
strategies, and provide a higher reasoning level where the planning that cannot deliver a
solution in a certain level can be processed by a planner in a higher level of a hierarchi-
cal setting. In fact, we have shown the possibility of collaborating Monitoring components
that use information stored on other Monitoring components to compute the values of some
metrics, and the set of interconnected Execution components that can drive the execution
of actions to specific components in the application. In the same sense the Planning com-
ponent can form a “Planning backbone” where the decision can, in a first step, be taken in
the local level and, in a second step if the situation cannot be solved locally, forwarded to
a higher level planner. Another interesting alternative is to avoid a greedy approach like
the one just mentioned, and instead of executing immediately the decision locally taken,
submit it to the higher level planner where it can be compared with other solutions.

• A problem that we have mentioned, but not addressed, is the safe execution of the actions
decided by the Planning component. In our experiments we have used simple actions,
designed in a way that we are certain that they can be executed in parallel, without ren-
denring the system in an inconsistent state. However, an improvement would be to have a
mechanical way to determine if two or more actions can be concurrently executed over the
system, with little effort from the side of the programmer. Indeed, a simple criterion can
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consider the spatial dimension: two actions defined to execute in different, unrelated sec-
tions of a composition can be executed at the same time; however it is not evident to deduce
the consequences that an action can have, even if it is executed from separate components
and how they can impact the composition of the application. Nevertheless, we consider
that the structured communication that we enforce through the framework can be a good
support for experimentation in this area.

• So far, our implementation requires the existence of appropriate interfaces, called NF in-
terfaces, as connection points to communicate the MAPE components inserted inside the
membrane with those inserted in the membrane of other components. This restriction im-
poses that the functional component be instantiated with the appropriate interfaces. How-
ever, given that the construction of the membrane is handled by the middleware, it would
be more convenient to allow also the insertion and removal of the needed interfaces, elim-
inating the need to enforce a specific method (createMMtype()) to instantiate components
that are “manageable” and making more transparent the addition of autonomic behaviour
for the developer of the functional task. This dynamic change of the NF type of the compo-
nent (addition/removal of NF interfaces) can be also a reason to promote a dynamic adapta-
tion of interfaces. In fact, using the framework, a basic level of adaptation can be achieved.
The insertion of specific logic for computing metrics in the Monitoring component, which
may be a different logic to compute the same indicator in each component, is already a way
to make the Monitoring component adaptable to the monitoring features provided by each
implementation. A similar fact happens with the Execution component where the inser-
tion of an appropriate translation engine for each managed component allows to adapt the
Execution component to each service. Nevertheless, this is only a basic level of adaptation
restricted to the functionality of these specific components and the appropriate conversion
elements (components, or other units of logic) must be provided by the administrator of the
application.
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AUTONOMIC MONITORING AND MANAGEMENT OF COMPONENT-BASED

SERVICES
Abstract

Software applications have evolved from monolithic, stable, centralized and structured applications
to highly decentralized, distributed and dynamic software, forcing a change in the software development
process. Current attention has turned to the development of service-based applications, where the focus
is in the provision of functionality that is delivered as a service and where independent providers offer
services that can be dynamically composed and reused in order to create new added-value applications,
giving rise to an ever-growing ecosystem of loosely-coupled, geographically dispersed, and rapidly evolving
services.

Among the multiple advantages of the service-based approach to software development, new challenges
raise. The dynamic, evolving, and heterogeneous nature of such service compositions makes the manage-
ment tasks more complex as not all the services are under the control of a single entity, and the environ-
mental changes during the execution of a service composition cannot be completely foreseen. In order to
properly address this situation, a service-based application must be able to adapt itself to such conditions.

In this thesis, we present a generic framework that improves the adaptability of component service-
based applications by giving a common and efficient means to introduce monitoring and management tasks
at runtime into the application, and allows to provide autonomic behaviour. The framework itself follows
a component-based approach where the different tasks of an autonomic control loop can be inserted and
removed at runtime in order to adapt to the monitoring and managment needs.

We present the design of our framework using a generic component model (SCA), and we provide an
implementation using a middleware that supports distributed component-based services (GCM/ProActive).
We illustrate the feasibility of our approach through an example service-based application improved with
monitoring and management features, providing an autonomic behaviour. The examples and evaluations
conducted lead us to think that this approach is a feasible tool that can facilitate the insertion and devel-
opment of autonomic features.

SURVEILLANCE ET ADMINISTRATION AUTONOME DE SERVICES BASÉS SUR DES

COMPOSANTS
Résumé

Les applications ont évolué, depuis des logiciels monolithiques, stables, centralisés et fortement struc-
turés, à des logiciels fortement décentralisés, distribués et dynamiques, ce qui a provoqué un changement
dans le processus de développement. Ainsi, les préoccupations actuelles sont tournées vers le développe-
ment des logiciels orientés services, où le pivot est la fourniture de toute fonctionnalité ?en tant que ser-
vice?, où des fournisseurs indépendants proposent des services qui peuvent être composés de façon dy-
namique, et réutilisés pour créer de nouvelles applications à valeur ajoutée, ce qui donne naissance à un
écosystème grandissant de services à couplage faible, géographiquement distribués, et qui évoluent rapi-
dement.

Malgré les avantages offerts par l’approche basée services pour le développement des logiciels, il se pose
aussi de nouveaux défis. La nature dynamique, évolutive, et hétérogène de ces compositions de services
rend les tâches de gestion plus complexes, car les services ne sont plus contrôlés pour une seule entité,
et les changements de l’environnement pendant l’exécution d’une composition des services ne peuvent pas
être complètement prévus à l’avance. Pour être capable d’affronter ces types de situations, un logiciel basé
sur des services doit s’adapter de manière si possible autonome à ces conditions.

Dans cette thèse, nous présentons un canevas générique qui permet d’améliorer l’adaptabilité des logi-
ciels basés sur des services en proposant un moyen uniforme et efficace pour ajouter des tâches de surveil-
lance et de gestion dans une application, et aussi permettre de fournir un comportement autonomique. Le
canevas est lui même basé sur des composants logiciels, SCA au niveau de la conception, et GCM/ProAc-
tive au niveau de la mise en oeuvre. Nous illustrons la faisabilité de notre approche à travers un ex-
emple d’application basée sur des services, que nous étendons avec des fonctionnalités de surveillance et
d’administration autonomes. Ces exemples et leur évaluation nous laissent penser que notre approche est
utilisable en pratique.


	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Problem description
	Goals
	Solution Overview
	Thesis Structure

	Context: Services and Components
	Service-orientation and SOA
	Grid and Cloud Computing Resources
	Component-based Software Engineering
	Service Component Architecture: SOA+CBSE=SCA
	Autonomic Computing
	Summary

	State of the Art
	Phases in the autonomic control loop
	Frameworks and Tools
	Comparison
	Summary

	Positioning
	Requirements and Proposed Solution
	Benefits of the solution for supporting autonomicity
	Summary

	Framework Design
	Overview
	Monitoring
	Analysis
	Planning
	Execution
	Summary

	Background and Technical Contributions
	Fractal
	GCM
	GCM/ProActive
	Technical Contributions
	Summary

	Implementation
	Framework Implementation
	Monitoring
	Analysis
	Planning
	Execution
	Console Application
	Summary

	Evaluation
	Evaluations
	Example: Tourism Planner
	Summary

	Conclusion and Perspectives
	Contribution
	Perspectives

	Bibliography

