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Abstract. This work presents a study regarding the search for an op-
timal value of the history size for the prediction/prefetching technique
history-based prefetching, which collects the recent history of accesses to
individual shared memory pages and uses that information to predict the
next access to a page. On correct predictions, this technique allows to
hide the latency generated by page faults on the remote node when the
access is effectively done. Some parameters as the size of the page history
structure that is stored and transmitted among nodes can be fine-tuned
to improve the prediction efficency.

Our experiments show that small values of history size provide a bet-
ter performance in the tested applications, while bigger values tend to
generate more latency when the page history is transmitted, without im-
proving the prediction efficiency.

Keywords: Distributed shared memory, data prefetching, distributed
systems.

1 Introduction

Software distributed shared-memory (DSM) systems provide programmers with
a virtual shared memory space on top of low cost message-passing hardware, and
the ease of programming of a shared memory environment, running on a network
of standard workstations [I]. However, in terms of performance, DSM systems
suffer from high latencies when accessing remote data due to the overhead of
the underlying message-passing layer and network access [2I3]. To address these
issues several latency-tolerance techniques have been introduced. One of these
techniques is called prefetching, it reduces latency by sending data to remote
nodes in advance of the actual data access time.

Many prefetching techniques have been proposed. In this work we will focus
on history-based prefetching, a prediction/prefetching strategy that has proved
useful to reduce latency issues for a DSM system on certain applications that
show a regular memory access pattern [4]. In order to reduce latency, this tech-
nique collects the recent history of accesses to individual shared memory pages,
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and uses that information to predict the next access to a page through the
identification of memory access patterns.

Throughout the execution of an application, the number of accesses made to
a certain page can be very large. Hence it could be highly inneficient to store the
whole history of accesses made to each page. The solution to this problem is to
store only the M most recent accesses. The parameter M therefore determines
the size of the page history.

This work presents a study regarding the search for an optimal value of the
parameter M. There are adventages and disadvantages of giving M a big value.
On one hand, a big history is more likely to contain the information required to
make a correct prediction, therefore reducing latency. But, on the other hand,
since the page history must travel along with the ownership of the page from one
node to another, a bigger history involves the size of the messages that must be
sent to grow, causing latency to increase due to the excess of data that has to
be transmitted.

A series of experiments were done with three applications running over a
page-based DSM system, on a 14-nodes linux cluster. Results show that small
values for M provide a better performance in the tested applications. Bigger
values tend to generate more latency when page history is transmitted, and does
not provide a major benefit in the prediction efficiency.

The rest of this paper is organized as follows. In section [2] some related
work regarding other prefetching techniques is discussed. Section [3] describes
the prediction technique, and the issue of the size of the page history. In sec-
tion ] experimental results and analysis are presented. Finally, section [B] gives
conclusions and perspectives of future work.

2 Related Work

Bianchini et al. have done important work in prefetching techniques for software
DSM systems. They developed the technique B+ [5] which issues prefetches for
all the invalidated pages at synchronization points. The result is a high decrease
of page faults, but at the cost of sending too many pages that will not be used
and increasing bytes transfer. They also presented the Adaptive++ technique [0]
that predicts data access and issues prefetches for those data prior to actual
access. Their work uses a local per-node history of page accesses that records
only the last two barrier-phases and issues prefetches in two modes: repeated-
phase and repeated-stride. Lee et al. [7] improved their work, using an access
history per synchronization variable. History-based prefetching uses a distributed
per-page history to guide prefetching actions, in which multiple barrier-phases
can be collected leading to a more complete information about the page behavior.
Prefetches are only issued at barrier synchronization events.

Karlsson et al. [§], propose a history prefetching technique that uses a per-
page history, and exploits the producer-consumer access pattern, and, if the ac-
cess pattern is not detected, uses a sequential prefetching. History-based prefetch-
ing differs in that it supports more access patterns, and the page history
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mechanism provides more flexibility to find repeated patterns that are not cat-
egorized. Also, if no pattern is detected, no prefetching action is generated,
avoiding useless prefetches.

3 History-Based Prediction

History-based prediction is a technique that allows processors to prefetch shared
memory pages and make them available before they are actually accessed. Using
a correct prefetching strategy, page faults are avoided and the latency due to
interruptions and message waiting from other nodes is hidden, improving the
overall application performance.

Historical information about page behavior is collected between two consecu-
tive barrier events. Predictions are generated inside a barrier event to make sure
that no other node may generate regular consistency messages, hence avoiding
overlapping of those messages and prefetching actions. When every node has
reached a barrier, a prediction phase is executed, in which every node makes
predictions using the information collected, and speculatively sends pages to
other nodes. After that, the barrier is released.

3.1 Page History

History-based prediction uses a structure that stores the access history for each
shared memory page. This structure is called page history. A page history is a list
H, composed of M history elements: H = (hy, ha, ..., har). Each history element
h; represents one access to one shared memory page and contains the following
information regarding the node that accessed the page: the access mode used;
the number of the execution phase when the access was actually made; and a
list of predictions that were made in the past when this history element was the
last in the page history. Only the last M history elements are kept, reflecting the
last M accesses to the page.

A page history is updated using a sequential-consistent model. A page history
migrates between nodes along with the ownership of the page where it belongs,
every time a node gets permission to write on that page. At any time, only the
owner of the page can update its page history.

The page history of page p is updated by the owner of p when a local read
fault or write fault on p is detected, and also when remote faults over p are
received. After the page history of p has been updated, the owner may reply to
the remote request according to the rules of the consistency protocol.

3.2 Prediction Strategy

Predictions are made at the end of each execution phase, when all nodes have
reached a barrier, to avoid overlapping with regular consistency actions. Every
node executes a predictive routine for each page that it owns.

The predictive routine attempts to find a pattern on the page history, by
looking for the previous repetition of the last D accesses seen, and predicting
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Fig. 1. Prediction of access 2r with D = 4. The match was found when S = 4.

the same behavior that was seen, in the past, after that sequence. In applications
that show a regular memory access pattern, the repetition of a certain sequence
of accesses can be expected, so that this prediction should be correct in most
situations.

If the routine can not deduce a possible next access, then no prediction is
made ; otherwise, another routine is called to actually execute the predictions.

A page history is analyzed using a fixed-size window W of length D < M,
W = (wq,ws, ..., wp) and comparing them to the last D accesses on page his-
tory, stored in the list Last = (hyr—(p—1y,---,ha—1, har). Last is compared to
Wg = <h'M—(D—1)—Sv hM_(D_Q)_S, cooshy—1-s, hM75> for S € {17 2, ... M—D}
in increasing order. If both lists happen to be equal, then the access hp;_g41 is
predicted as the next access for the page, as shown in Fig. [

p-Prediction():
if (p.status == PREFETCHED)
return O;
for(i=0;i<D;i++)
last[i] = p.history[M-(D-i-1)];
for(s=1;s<M-D;s++) {
for (i=0;i<D;i++)
window[i] = p.history[M-(D-i-1)-s)];
if (compare(last,window)) {
p-history[M] .addPrediction(p.history[M-s+1)]);
return 1;

3

return O;

If the status of the page is PREFETCHED, it means that the page is owned by
the node because of a previous prefetching action and was not accessed during
the previous execution phase. In this situation the page was predicted but it was
not used by the destination node, so it should not be predicted again.

3.3 Pattern Analysis

The page behavior may also be predicted by the identification of three predefined
page access patterns and taking appropriate actions for each one. If no pattern
can be detected, then the prediction routine described in section 3.2 can be used.
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Pattern detection is based on the categorization described by Monnerat and
Bianchini [9], where page behavior can be classified as 1IPMC, MIG or MW.

1PMC is a one producer - multiple consumers pattern, where there is only one
node that writes on the page, and many readers. This behavior has a low rate of
page ownership transfers. MIG stands for migratory pages. It is a pattern where
the page ownership is transferred to a different node in each execution phase.
This behavior allows a good hit ratio to be reached using the basic prediction
strategy of history-based prefetching. MW is a multiple writer pattern, in which
one page is owned by different nodes inside the same execution phase. In this
case it is hard to make a good prediction. Since the prediction strategy only
works at the end of an execution phase, at most 1 page fault will be avoided and
the N — 1 remaining writes will still generate page faults. The case may be even
worse if the nodes must compete for the access to the page, which will make the
access almost random at every phase.

3.4 Page History Size

Previous work [4] showed the usefulness of history-based prefetching to be applied
on some applications that show a regular memory access pattern. Experiments
considered a fixed size M for page history assuming this choice was good enough
for each application.

The size M of the page history data structure determines the amount of
history that is kept to make prediction decisions, and that is sent to remote nodes
along with the ownership of the related page. Theoretically, a large value of M
could improve the prediction accuracy, because a greater amount of information
is transmitted every time a page history is transferred between two nodes. On the
other hand, a smaller history size is faster to transmit, but may not have enough
information to deal with some situations and could lead to wrong predictions.

4 Experiments

The experiments were executed on a platform of 14 Pentium IV processors,
256MB RAM, running linux Fedora Core 1. All computers execute the appli-
cations over DSM-PEPE [10], a page-based software DSM system designed to
execute parallel applications over a shared-memory environment on multicom-
puters and different consistency protocols. Tested applications follows.

— LIFE is an implementation of Conway’s Game of Life [11] on a 2048 x
2048 circular matrix. The parallelization is done through stripes. On each
iteration, each node computes a different stripe of the matrix. Processors
wait in a barrier before computing the next iteration.

— SHEAR is an implementation of the Shearsort algorithm [12] to sort integers
inside a 1024 x 1024 matrix. The execution goes through a fixed number of
alternate row-phases and column-phases. The parallelization is done through
stripes. At every iteration, each node works over a fixed set of consecutive
rows, or consecutive columns.
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— GRAPH is a distributed single-source shortest-path search on a graph of N
vertexes on shared memory [13]. Each node is assigned a fixed set of vertexes
to evaluate. On the kth iteration, nodes compute the shortest path from each
vertex to a distance of k vertexes away, using the information from their
neighbors, if necessary. After N iterations, the weight of the shortest-path
to every node has been calculated.

4.1 Methodology

Each experiment was executed under a sequential-consistent protocol, using
history-based prefetching and different values for M. Also, a normal execution
without any kind of prefetching was done.

Statistics collected in each case include execution time, locally-generated
read-faults and write-faults, prefetches done for read-only and read-write modes,
and correct prefetches detected.

The metrics used to evaluate the effectiveness of the technique are coverage
and hit ratio, as it has been used in previous related works [4I3]. Coverage refers
to the percentage of page faults which are eliminated by prefetching pages in
advance. Hit Ratio, or utilization, is defined as the percentage of valid prefetches
among total prefetches. A wvalid prefetch is a prefetch that successfully avoids the
generation of a page fault. Coverage and hit ratio are calculated as follows:

Coverage Valid Prefetches Hit Ratio Valid Prefetches
'V = —
& Total Page Faults’ Total Prefetches

(1)

A technique that shows a high coverage avoids a high percentage of page
faults. As an example, prefetching all shared memory pages would achieve a
high coverage, but at the cost of a low hit ratio. On the other side, a technique
could provide a high hit ratio making only correct predictions, but covering only
a low percentage of all page faults. A good prefetching strategy should aim to
get both a high coverage, and a high hit ratio.

4.2 Results

Results obtained are shown for each application. The parameter D = 14 was used
as the fixed size of the prediction window. This value is based on the number
of nodes where the applications were ran, based on the assumption that the
window size should be at least as big as the number of active processors in order
to be able to reflect at least one action of each one of them. A further study is
required to validate this assumption.

Results are presented in terms of the time taken by the system to complete
the execution, including the time required to execute the prediction routine and
the prefetching actions; and the coverage and hit ratio obtained for each value
of the page history structure size, M.

LIFE. LIFE is a case of an extremely regular application. The shared mem-
ory access pattern induced by the matrix division alternates between reads and
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Fig. 2. Execution time, coverage and hit ratio for LIFE application

writes of different nodes in a repetitive sequence along iterations. Pages present
a migratory pattern, in which by every two iterations, page ownership changes
from one node to another, and then returns to the first one. This pattern is quite
suitable for history-based prefetching, since the sequence of page accesses always
follows the same cycle.

This case shows the benefit of a small size for the page history structure. Ex-
ecution time linearly increases as the history size grows. On the other hand, the
efficiency of the predictions is not affected as coverage and hit ratio remains the
same. For history size values lower than 14, the techniques makes no predictions.
For values greater than 150, the execution time increases over the no-prediction
execution, but giving no improvement in the quality of the prediction. This is
due to the greater amount of history that has to be transmitted every time the
ownership of a page is transferred.

SHEAR. SHEAR is a case of a difficult application for this strategy: row-phases
produce a uniform page access per node due to the row-assignment, but column-
phases produce false sharing, since when sorting a column a node must access
every page, and this page must be written by every node in the same phase.
This produces a multiple-writer access pattern and an almost random order in
the access sequence to a page, since nodes must compete for the access to a page
every time a column is sorted.

The SHEAR application is a case where few predictions can be done, so the
cost of searching for patterns through the page history in order to make pre-
dictions, and the additional page faults generated because of wrong predictions,
begins to take importance. For small history size values, the execution time is
almost the same as in the no-prediction execution, while for bigger values the
execution time increases as a consequence of the page faults generated by wrong
read-write predictions, a higher number of entries in the page history structure,
and a bigger time taken to find patterns.

Coverage remains with a low value because only a little number of page faults
are successfully avoided. Inside that little number, however, the Hit Ratio is high
enough to show the accuracy of the predicting strategy and tends to stabilize as
the page history size increases.
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Fig. 4. Execution time, coverage and hit ratio for GRAPH application

GRAPH. GRAPH presents a case for a 1IPMC pattern due to the node-to-page
allocation. At each iteration, all nodes update the information of their vertexes
regarding shortest distances to other vertexes, writing on their pages and, in
the next iteration, that information is read by the other nodes to update their
information on the next phase. This way, for every page there is only one node
that writes on it, and every other node only reads from it, producing the one-
producer multiple-consumers access pattern.

In this application, almost no page ownership is transferred among nodes
because of the 1IPMC pattern. Each node makes read access to pages owned by
remote nodes, and writes only on locally owned pages. When page history size
is increased the cost associated to page history transfers is not relevant, as page
history is seldom transferred, so the execution time only varies depending on the
additional time required to generate predictions.

Coverage is not affected by the page history size, and hit ratio barely increases,
showing that the quality of the prediction is not affected by a bigger amount of

information available.

4.3 Analysis

The results show that the size of the page history does not significatively increase
the quality of the predictions made. Coverage and hit ratio are generally not
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harmed by the storage of a small list of past access, providing that it is big
enough to allow a pattern to be found. Once again the fixed parameter D of the
window size, reflecting the number of nodes involved in the execution, has proved
to be useful. In most applications, predictions can be made with a page history
size being at least two times the window size used. A further study should prove
this conjecture.

Applications can achieve a better performance by looking only at a small
list of past accesses, rather than having bigger amounts or information. In all
situations, maintaining a complete history of events will lead to a poor perfor-
mance, as the time taken to transmit and search through the history overcomes
the prediction improvement.

5 Conclusions and Future Work

This work presented an experimental study on finding an optimal size for the M
parameter used in history-based prefetching. This parameter represents the size
of the page history that is stored, and that is used to make predictions about the
future shared memory access behavior of the nodes on a software DSM system.

Results show that the tested applications achieve a better performance when
the page history structure stores a small portion of the most recent shared mem-
ory accesses made to each page. Large amounts of information lead to a poor
performance when the page ownership, and therefore, the page history is repeat-
edly transferred among nodes, and has to be searched.

The quality of the prediction, measured in terms of coverage and hit ratio, is,
in most cases, barely improved by a bigger page history size. In the applications
tested, a small size of M provides a prediction efficiency almost as good as that
obtained with a large size.

As a future work, a similar study has to be done to measure the influence
of the D parameter, that represents the size of the prediction window used to
find patterns. Our conjecture, based on the fixed size used in this work and the
results obtained, is that the history size should be at least two times bigger than
the window size, and probably not bigger.
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