
Enabling SLA monitoring for component-based
SOA applications

Cristian Ruz, Françoise Baude
INRIA Sophia Antipolis, CNRS, I3S, Univ. de Nice Sophia Antipolis

2004 Route des Lucioles, BP93, F-06902 Sophia-Antipolis CEDEX, France
{Cristian.Ruz,Francoise.Baude}@inria.fr

Abstract—This work contributes to the research of how to
define a framework that can be plugged to a component-based
SOA application to provide SLA monitoring for performance.
We define a low intrusive Monitor Controller that listen to
asynchronous notifications about the performance of the mon-
itored application, and stores that data in a scalable way. The
approach allows flexibility as it defines the Monitor Controller as
a non-functional component bound to the monitored entities, and
exposing the monitored data through a non-functional interface.
A proof-of-concept implementation is described, showing the
feasibility of this approach over a middleware that provides
asynchronous communication between consumers and providers
over a grid environment, and which also serves as a platform for
a large-scale SOA.

Index Terms—grid computing; SLA; SOA; monitoring; SCA;
QoS;

I. INTRODUCTION

In service provisioning relationships, contracts relating to
Quality of Service (QoS) are agreed in the form of a Service
Level Agreement (SLA). This agreement establishes parame-
ters that are to be met during the service. To watch the ful-
fillment of this contract, these parameters must be monitored
through techniques that allow for SLA monitoring [1].

SLA monitoring has several implications for the manage-
ment of a runtime service. One of them is that it allows to de-
termine if the provider is behaving accordingly to the contract,
and in case it does not, expose the required information to take
corrective actions. Another use for the monitored information
is when performing dynamic recomposition. Monitored data
can feed the information required during the dynamic recom-
position of a service, based on a desired QoS [2].

Given a previoulsy agreed SLA, we are interested in be-
ing able to monitor the compliance of the provider to this
agreement. Although there are several aspects related to SLA
monitoring, like provenance and security, we point specifically
to performance monitoring, that is, the time that a given
service takes to answer the requests that it receives.

One way to implement SLA monitoring in an architecture,
is through the insertion of probes or counters in critical parts
of the architecture, to measure the time that the service takes
to execute a request. This information can be complemented
with rules defined to be executed in the case that the monitored
parameters do not behave accordingly to the desired values,
to provide autonomic management [3], [4].

In this work we present a framework to add SLA moni-
toring capabilities to a component-based application built on
the principles of SOA. Our solution enables to monitor the
performance of a component, and obtain information that can
be used by another, possibly autonomic, component to take
decisions about the compliance of the monitored component to
an SLA, or allow an external application to provide meaningful
information to a human agent. While we focus in performance
monitoring, the approach can also be applied to other aspects
of SLA monitoring like, for instance, provenance and security.

We demonstrate the feasibility of this SLA monitoring
framework, through a proof of concept implementation in a
middleware that provides asynchronous services over a grid
environment, and also serves as a platform for large-scale
SOA.

The following sections are organized as follow. Section
II describes the context and positions our work. Section
III describes our proof of concept implementation and the
platform used. Section IV mentions some examples of how
our solution can be used, and discusses performance issues.
Section V presents related work, and finally section VI draws
the conclusions.

II. POSITIONING OF CONTRIBUTION

Service Oriented Architectures (SOA) allow to separate
the different concerns in large-scale enterprise applications,
through the definition of independent and loosely coupled
services that can be accessed in an standardized way. Services
in a SOA environment inter-operate using a formal definition
of interfaces. This way, services can be defined in a manner
that is independent of the underlying platform or programming
language. Individual services can be dynamically composed
into workflows to form more complex applications.

Common technologies used for implementing a SOA en-
vironment are Web Services described using Web Services
Description Language (WSDL), and Business Process Execu-
tion Language (BPEL) for describing business processes and
workflows. UDDI for discovery of services, and SOAP for
communication.

In this work, we consider an SOA application implemented
according to the Service Component Architecture (SCA) [5].
SCA is a specification for designing and building SOA appli-
cations, in which services and workflows are modeled as com-
ponents, called SCA components. SCA defines a hierarchical



Fig. 1. SCA composite component embedding two components

component model that is independent of the technology used
to implement these components.

SCA components can have any number of interfaces, named
SCA Services, and dependencies, called SCA References to
other SCA services. Dependencies between two SCA compo-
nents are called SCA bindings, and several SCA components
can be grouped into bigger SCA composites that hide their
inner structure from the outside, and which can be handled in
the same way as any other SCA component. One example and
the common notation is shown in Fig.1.

Some examples of SCA implementations are Apache Tus-
cany [6], IBM Websphere Application Server [7], and FraS-
CAti [8].

An SCA-based SOA can potentially be composed of a
wide number of services forming a complex workflow. These
services can themselves be widely spread on a distributed
environment like a grid or the Internet. We consider in our
design to we have a large-scale SCA-based SOA.

There are several concerns we considered when designing
our monitoring framework for large-scale SCA-based SOA.

• Dynamicity. SOA environments are highly dynamic. Pro-
visioning relationships can change during the lifetime
of a service or workflow. Therefore, tools must be able
to adapt to these dynamicity. Our framework monitors
a component-based SOA application that can adapt to
changes in the runtime architecture.

• Scalability. In a large-scale application, to be able to
monitor the performance of individual components, and
make that information available to make decisions, we
must store the collected data in a scalable way that also
makes it easy to access. For that concern we use dis-
tributed storage of monitoring information in the involved
components.

• Low intrusiveness. Monitoring has a cost in terms of per-
formance, as some fraction of the computational power
must be dedicated to collect and process the data. In our
approach we use an asynchronous environment, where the
management of the monitored data can be done in a way
that does not block unnecessarily the service. Moreover,
the environment is flexible enough to allow that, given
the necessity, the data can be processed remotely.

• External entities. Existing works [9] analyze the situation
of component-based applications where an SLA can be
split among all components, managing non-functional

concerns at different levels. That work considers that
all components of the application, which can be seen as
services in a SCA-based SOA, can be managed by means
of autonomic managers attached to the components. Our
approach aims to extend this situation by considering the
existence of services implemented by components over
which we do not have control, because they are provided
by external entities. In that case we also need to take
performance measures, to be able to track a perceived
response time in order to watch the compliance to the
SLA.

In the next section we describe the solution that we have
designed, where these concerns are taken into account.

III. DESIGN AND IMPLEMENTATION OF THE SOA
MONITORING SOLUTION

We describe the design of out SOA monitoring solution.
For the implementation we have chosen the GCM/ProActive
middleware, so we also give the necessary background on this
tool.

A. ProActive

The ProActive Grid Middleware [10] is a Java middleware
which aims to achieve seamless programming for concurrent,
parallel and distributed computing, by offering an uniform
active object programming model, where these objects are
remotely accessible via asynchronous method invocation and
futures.

ProActive provides means of notifying events by providing
an asynchronous and grid enabled JMX connector [11]. Active
objects are instrumented with MBeans which provide notifi-
cations about events at the implementation level. This way,
monitoring information from the active objects, and from the
grid infrastructure levels is exposed. We rely upon this JMX-
ProActive mechanism, as it can handle grid-scale, large-scale
monitoring information collection and notifications.

B. GCM

The Grid Component Model (GCM) [12] is a component
model for grids, that takes the Fractal component model [13]
as a base for its specification. Fractal defines a component
model where components can be hierarchically organized, re-
configured, and controlled. GCM extends that model providing
the components the possibility to be remotely located and
deployed in a grid environment.

In GCM it is also possible to have a componentized
membrane [14] that allows the existence of non-functional
components. Having non-functional components allows to
have a more flexible control of non-functional concerns, and
develop more complex implementations [15]. Non-functional
components can be accesed through NF server interfaces and
can bind to other components through NF client interfaces.

GCM/ProActive is the reference implementation of
GCM. Being built over an active object environment, the
GCM/ProActive platform provides asynchronous communica-
tions, which poses more challenges for monitoring events.



Fig. 2. Example GCM component A, including subcomponent B and C.
The membrane takes care of non-functional concerns, and can include NF-
components .

Fig.2 shows an example of a GCM component, with
a composite component including two subcomponents. The
composite appears to other external components as any other
primitive component, hiding the details of its internal compo-
sition. When receiving a request through a server interface,
the composite forwards the request to the internal component
bound to that interface. In a similar way, when an internal
component wants to communicate to an external component,
it must do it through a call to the composite, which forwards
the request to the bound component. This way, the composite
abstract the internal implementation. This fact is used by our
solution when describing how to store the monitored data.

Current work exists for giving an SCA personality to GCM
components, so that GCM/ProActive can serve also as a
runtime SCA infrastructure, being a valid platform to support
our SLA monitoring solution.

C. Monitor Controller

At the implementation level of GCM/ProActive we already
have some information available through the JMX-ProActive
connector. We aim to leverage this information at the level
of components, storing it, and make it available for other
components or applications.

For this objective, we rely on non-functional components,
also referred to component controllers, introduced in the mem-
brane of GCM components. These component controllers give
more flexibility, as they can be easily reused, and be assembled
with other component controllers to further customize the
monitoring process [15].

At the component level, we implement a specialized com-
ponent controller, called the Monitor Controller (MC). Being
a component controller, the MC is inserted in the membrane
of a GCM component as shown in Fig.3. The mission of the
MC is:

• Collect monitoring information by subscribing to the
required MBean, and listening to appropriate events, and
computing statistics.

• Store the important information of the events.
• Expose this information for later consulting and use.

D. Collecting information and statistics

We are interested in detecting events that allow to determine
the performance of the services. In GCM/ProActive, we must

Fig. 3. Location of Monitor Controller in the membrane of a GCM composite
A. The MC is connected to MC interfaces of subcomponents through NF-
bindings

consider that components are implemented by active objects,
which provide asynchronous communication. Because of this,
each component has its own request queue where incoming
requests are stored for being processed according to a defined
policy. Moreover, asynchronism is provided through the use of
futures; that means that when a request is sent to a service, the
response received is not the actual response, but a placeholder
where the response is to be stored once the service effectively
has taken place. Because of this, care must be taken to detect
the moment when the real answer for a request has been
received and not just a partial update.

We collect two kinds of events. Events that happen in the
caller side, this is, the component that issues the request, and
in the provider side, this is, the component that receives and
serves the request. By monitoring both sides of the service we
can determine, on the caller side, the service time perceived
by the caller, where not only the effective time of service takes
part, but also network latency can be involved. On the provider
side, whenever that component can be monitored (as could be
an external service over which we do not have any control),
it allows to determine the effective time taken by the service,
associate chains of requests, and trace service paths, where
several components may be involved.

We detect events on both sides by subscribing to the
appropiate MBeans and listening the JMX notifications gen-
erated. For each notification, the timestamp and attached in-
formation are stored. These timestamps are used to determine
the timing data for each request.

At the provider side, we detect the following events:
• tarr, the moment when a request is received by the

component and stored in its request queue for later
processing.

• tserve, the moment when a request is taken from the
request queue, and begins to be served.

• treply, the moment when the provider sends a reply to
the caller, regarding a finished request, if any reply was
expected. For void requests, this is not issued.

At the caller side, we detect:
• tsend, the moment when the caller sends a request to the

provider



Fig. 4. Events captured during the asynchronous service of request call p()
from component A to B

• trecv , the moment when the caller receives a response
from the provider, if a reply was expected. As we deal
with asynchronous requests, the caller may have been
doing some other work when the reply arrives. Also we
have to be sure that this answer is a definitive reply, in the
sense that by using it we don’t have to block for another
reply.

In GCM, components can be located in different places in a
transparent way. Even a composite component can have some
or all of their subcomponents located remotely. Given this
situation, it is worth noting that the timestamps compared are
always related to events that happen in the same pyhsical node,
so the differences are meaningful.

Fig.4 shows the events that are detected during the service
of a request.

As well as the events are collected, the Monitor Controller
computes statistics like average, maximum or minimum re-
sponse time, availability or throughput. These statistics are
updated during the event collection, so they are readily avail-
able.

E. Storing information

For each of the events, we store the name of both the re-
ceiver and sender components, the interface and method called.
This information is included in the notification generated by
the middleware implementation, so that the Monitor Controller
can receive it.

The Monitor Controller keeps two logs: the Request Log
and the Call Log.

• The Request Log stores tuples that represent a request
that arrives to the component through a server interface.
It includes an identifier for the incoming requests, an
identifier of the sender component, the interface and
method called, and the timestamps for the events tarr,
tserve and treply. There is one entry on this log for each
request received by the component.

• The Call Log stores tuples that represent a new request
called by the component on a client interface. It includes
the identifier of the request that was being served when
the new request was issued, this is, the parent request;

TABLE I
STATE OF A’S CALL LOG, AND B’S REQUEST LOG AFTER EXECUTING THE

EXAMPLE OF FIG.4. COMPONENT A IS ASSUMED TO BE SERVING A
REQUEST WITH IDENTIFIER r0 DURING THE CALL TO B

Call Log A
parent current dest interface method tsend trecv

r0 r1 B p p1 5 25

Request Log B
id caller interface method tarr tserve treply

r1 A p p1 4 7 18

a new identifier for the request that has been called,
the identifier for the called component, the interface and
method called, and the timestamps for the events tsend

and trecv.

By keeping both logs, it is possible to construct the path
followed by the request. Each time that a new request is issued,
an identifier for the new request is created, stored in the Call
Log and transmitted. This way a causality relationship can be
established.

Table I displays an example of the content of the logs, after
the execution of the example from Fig.4. In this case, we
assume that component A was serving a request with identifier
r0 while it made the call to component B, with identifier r1.

In that example, the component A perceived a response time
from B of 20ms. Component B received the request, kept it
in the request queue during 3ms, and took 11ms to serve
it. The total service time taken by B was 14ms. The 6ms.
difference can be caused by network propagation. Note that
each component stores its logs in an independent way.

Following the hierarchical nature of the composition of
GCM components, the MC of the composite stores the ag-
gregated information of all the requests that go through the
composite. This means, the requests that have entered by a
server interface, and the requests that have been generated
through a client interface. All data related to the internal
serving of the request is stored in the MC of the involved inner
subcomponents. Whenever those data are required, the MC of
the composite can make non-functional calls to the MC of
the subcomponents like can be pointed in Fig.3. This strategy
avoids the problem of having the same information stored
several times and improves scalability. Even more, the MC can
be located in a different place than the monitored component,
relying on the asynchronous JMX-ProActive notifications to
receive the events.

F. Exposing information

The information stored through the MCs must be exposed
to be of utility. The interested recipients for the collected data
can be other MCs, which can belong to inner components
of a composite, or to external components; and external
applications that may want to do further analysis.

The MC must provide access to the raw logs stored in the
component, as well as more detailed information that could



require additional processing. For example, the average, maxi-
mum or minimum service time for this component, availability
percentage, or throughput. For all these statistics, a filter can
be applied to refer to an specific interface, a defined window
of time, or a set of requests. Section IV-B gives more detail
about that.

This information is exposed in two ways. The first is through
a non-functional server interface. This allows that another
component, which can be the MC of a composite to which the
current component belongs (Fig.5), or well another external
non-functional component (Fig.6), can connect to it to obtain
the data it requires.

The second way to expose is for another external applica-
tion, not necessarily component-based which can be used to do
further analysis over the data collected, or expose it in a more
meaningful, possibly graphical way. For this, a specialized
MonitorController MBean is created, which can be connected
through JMX standard means by using the JMX-ProActive
connector.

IV. MONITORED DATA USAGE

From the basic monitored data stored by the Monitor
Controllers, more complex data can be obtained. We describe
two possible uses, and show an example of a more complete
situation.

A. Service Invocation Tracking

Monitored data can be used to track the service invocation
path of a specific request, and obtain the time spent in each
component involved in the service. This kind of decomposi-
tion, typical in profiling applications, can be used to detect
critical points in the service of the request where performance
could be failing, or to determine services utilised in a request
for pricing goals.

Using the Monitor Controllers of the components, tracking
information can be obtained. By using the information stored
in the logs, the path of the request and its child request can
be followed, forming a calling tree. This calling tree can be
enriched by statistics associated to each request.

However, the logs are distributed through several compo-
nents, which is an advantage from the scalability point of
view, but poses a challenge for path reconstruction, as the
MC of different components must communicate. We solve this
by benefiting of NF bindings allowed by GCM [15]. In this
context two situations arise.

When a component receives a request, it can serve it by
itself using internal means, or by calling subcomponents in the
case it is a composite. For tracking that request, the MC of the
composite must talk to the MC of the inner subcomponents.
This can be done using internal NF bindings as shown in Fig.5.

An example of how stored logs can be used to reconstruct
the service invocation path of a request is presented in Section
IV-C.

If the component requires another external component to
serve a request, then it is necessary to connect to the MC
interface of this external component. To solve this situation, a

Fig. 5. MC of composite A connects to MC interfaces of inner subcompo-
nents.

Fig. 6. Component A uses a NF client interface to connect to the MC
interface of external component B

client NF interface of the caller component is used to connect
to the MC interface of the called component. We define that
such NF binding is done each time that a regular functional
binding is set between two components. This situation can be
seen in Fig.6.

After the execution path has been retrieved, the aggregated
information can be stored inside the MC for later use, so it
remains ready to be required again from another component or
external application, avoiding to perform the tracking several
times.

B. Filtering Statistics

In case when more complex processing is required from
the statistics, we can profit of the flexibility provided by the
non-functional components present in the membrane of GCM
components.

Further processing could include filtering. As already stated,
the Monitoring Controller provides, through an interface, basic
statistics like average, maximum, and minimum service time
that are computed and updated while new request are pro-
cessed and the related events are detected. Another application
could require filtering these statistics to include only a specific
interface or method inside an interface, a defined window of
time, or a set of request according to some property.

The Monitor Controller can be extended to include these fil-
ter capabilities while exposing the appropriate non-functional



TABLE II
STATE OF THE CALL AND REQUEST LOGS AFTER EXECUTING THE

EXAMPLE OF FIG.7. WHILE SERVING r0 , COMPONENT B MAKES TWO
CALLS TO D. TIMES ARE DISPLAYED IN SECONDS.

Call Logs
CallLog parent id. dest intf. meth. tsend trecv

Z - r0 A p p1 0 11.515

A r0 r1 B p p1 0.000741 11.510

A r3 r4 E u u1 3.006 4.509

A r6 r7 F v v1 8.008 9.511

B r1 r2 D s s1 1.503 4.510

B r1 r5 D s s1 6.505 9.512

D r2 r3 A u u1 3.006 4.509

D r5 r6 A v v1 8.007 9.512

Request Logs
RLog id caller intf. meth. tarr tserve treply

A r0 Z p p1 0.000048 0.000133 0.000845

A r3 D u u1 3.006 3.007 3.008

A r6 D v v1 8.008 8.008 8.009

B r1 A p p1 0.000784 0.000841 11.507

D r2 B s s1 1.503 1.504 3.007

D r5 B s s1 6.505 6.505 8.008

E r4 A u u1 3.006 3.007 4.508

F r7 A v v1 8.008 8.008 9.511

interface. If required, another non-functional component can
be bound to the Monitor Controller to execute this post-
processing, thus avoiding to add too much processing task
to the Monitor Controller.

C. Example

Consider the example from Fig.7. A client application
represented by component Z makes a call on server interface
p of component A, and generates a possible execution path
displayed in Fig.8.

The path is implicitly available as displayed in Fig.8,
thought from that view it is not clear how the calls r3 and
r6 are related to r2 and r5. It may have happened that while
serving r2, D made both requests r3 and r6, and while serving
r5, it did not make any additional calls ; or it may have
happened that while serving r2, D made one of the requests,
and while serving r5 it made the other.

The final state of logs, is shown in Table II. All tables are
grouped for displaying purposes, but it must be noted that
each Monitor Controller keeps a copy of its own log, and no
particular Monitor Controller has the grouped information of
all logs at once.

By following the path from the Call Log, which can be
followed through NF bindings as explained in Section IV-A,
it is possible to find the actual sequence of calls. With this
information it is possible to create the effective call tree as
displayed in Fig.9.

The timing information is shown in Table II. From these

Fig. 9. Calling tree representing the path of the request r0 initiated by
component Z in Fig.8. The actual sequence of calls can be obtained from the
logs shown in Table II

timestamps it is possible to determine the time that each
component spent while serving a request. For example, the
time that component A took to serve request r0, as perceived
by caller Z is 11.515s. This time includes the time required
by all invocation that were generated while serving r0.

Consider request r5, which triggered the invocation of r6 to
composite A with timestamp 8.007. The composite forwards
it as a new request r7 to component F, with timestamp 8.008.
The answer from component F is received by the composite A
at 9.511, so r7 was served in 1.503s. That reply is forwarded
to D and received at 9.512, which means that r6 was served
in 1.505s.

When considering the total service time for a request involv-
ing calls to other components, the time of each invocation from
the component that made the original call must be taken into
account. Consider request r1, which triggers two calls from
component B: r2 and r5. The service time for r1 must be at
least the sum of the service time for r2 and for r5. In turn,
the service time for r5, as exemplified above, includes at least
the service time for r6, which must include the service time
r7.

From the times displayed in the Request Log it is possible
to check that components E and F take around 1.5s to serve a
requests r4 and r7. The time reported by component B to serve
r1 includes the sum of both request r2 and r5 that were made
to component D. The difference with the time reported by r1

in component B accounts for the time that the component was
performing internal work.

D. Discussion

As it has been pointed in section II, monitoring must be
as low intrusive as possible. This affirmation is also acknowl-
edged by other works [16], [17]. A valid question is the impact
that this framework has over the performance of the monitored



Fig. 7. Example GCM application

Fig. 8. Request path. Client Z calls p on composite A, which performs internal computation, and requires services from external components E, and F

application. Although we have not yet conducted experiments
to effectively measure this impact in a large-scale application,
we believe that performance would not suffer much harm,
as the framework relies on asynchronous notifications, and
it is implemented over a middleware that has been proved
proficient in demanding large-scale scenarios [10].

Moreover, by implementing the Monitor Controller as a
component controller, the monitoring tasks are delegated to
other thread: the thread of the active object associated to the
component controller. The functional service is therefore, not
blocked by the monitoring task.

Also, if the monitoring task becomes too demanding, the
Monitor Controller can be located remotely in another physical
node, in a transparent manner for the application. This way, the
only taks that remains in the monitored application is to gen-
erate the notifications, which is already done asynchronously.

V. RELATED WORK

Schmid and Kroeger [1] describe a decentralised archi-
tecture for SCA, where a Manager component is associated
to each workflow and to each service component, which is
responsible of monitoring the behaviour of that workflow
or service component with regard to its previously defined
QoS requirements. This way a logically layered architecture
for Service Level Monitoring is created, where the managers
associated to workflow components communicate with the
managers of the services participating in the worflow in order
to enforce the QoS requirements that have been defined.

Aldinucci et al. [9] present an approach for managing
NF concerns through Autonomic Managers in a hierarchical
setting, which are attached to the individual software modules
of the hierarchy, and by splitting the SLA into sub-contracts for
the lower level managers. Managers at the higher levels can
take more autonomous decisions than those at lower levels,
which will behave according to the decisions taken at the
higher levels. The top level manager receives from the user
an SLA, which is split in sub-contracts, which will be given
to the lower level managers.

Parsons et al. [17], [18] present and evaluate several ap-
proaches for extracting component-level interactions (CLI) in
component-based Java applications. These approaches allow
to extract runtime paths inside a complex application, and
provide information that can be used to better understand and
tune the targeted systems. Among them, the COMPAS tool
allows to perform adaptive monitoring in a complex J2EE
application. Like our framework, the information extracted can
be used to feed an autonomic management system that can
self-adapt the runtime configuration, and also can be used to
perform problem diagnosis.

Application Response Measurement (ARM) [19] is a stan-
dard for monitoring and diagnose application response time
in business applications. It provides C and Java bindings.
By using the ARM API, applications can be instrumented
with calls to ARM Agents, which make it available to other
management and analysis applications. Its principles have
been also applied to Web Services [20], [21] and multi-tier



environments [22] to correlate calls and monitor performance.
Neither of these approaches, though, targets the scalability and
flexibility of our solution.

VI. CONCLUSIONS

In this work, we presented a framework to collect perfor-
mance information from components in an SCA architecture,
and describe our current prototype implementation through a
middleware that implements a component model with asyn-
chronous invocations, which can be used as an SCA compliant
platform.

The information is collected by listening to notifications of
events, which are transmitted asynchronously by the middle-
ware, with minimal intrusion in the application functional ac-
tivity. The information collected is stored in a distributed way
in each component improving the scalability of the approach.
By implementing the monitor entities as components, which
can be remotely located by the middleware in a transparent
way, we aim for better flexibility and dynamicity. Finally, the
information stored is made available for other components or
external applications by using non-functional interfaces, and
asynchronous JMX MBeans as provided by the middleware.

For the moment we are experimenting and taking measures
for a small application as a proof of concept, but we are
in the process to extend it to an application comprising a
larger number of services, to demonstrate the feasibility of
our approach.

By applying the appropriate probes, it is possible to modify
the MC design to collect information for other aspects of an
SLA, not only performance, but also provenance and security,
for instance.

By exposing the information collected, this framework can
provide the data required to enable SLA monitoring, which
can feed mechanisms for QoS-aware service composition [2].
It can also provide the information required for an autonomic
system to take decisions and, if needed, reconfigure the
application to ensure compliance to an SLA.

This work opens the way to more distributed and scalable
supports for SCA-based SOA, as also targeted by [8]. It
leverages the GCM model and the GCM/ProActive imple-
mentation as feasible technical solutions to implement largely
distributed and dynamically monitorable, and thus adaptable,
SCA applications, using SLA monitoring techniques that are
also distributed and scalable.

REFERENCES

[1] M. Schmid and R. Kröger, “Decentralised QoS-Management in Service
Oriented Architectures,” in DAIS, 2008, pp. 44–57.

[2] M. Alrifai and T. Risse, “Combining global optimization with local
selection for efficient QoS-aware service composition,” in WWW, 2009,
pp. 881–890.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, 2003.

[4] M. Schmid, K. Geihs, and W. Allee, “Self-Organisation in the Context
of QoS Management in Service Oriented Architectures,” in Proceedings
of the 13th Annual Workshop of HP OpenView University Association,
Hosted by University of Nice at Cote dAzur. Citeseer, 2006, pp. 153–
164.

[5] “Service Component Architecture Specifications,” March
2007. [Online]. Available: http://www.osoa.org/display/Main/Service+
Component+Architecture+Specifications

[6] “Apache Tuscany.” [Online]. Available: http://tuscany.apache.org/
[7] “IBM Websphere Application Server.” [Online]. Available: http:

//www-01.ibm.com/software/webservers/appserv/was/
[8] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and

J.-B. Stefani, “Reconfigurable SCA Applications with the FraSCAti
Platform,” in 6th IEEE International Conference on Service Computing
(SCC’09). Bangalore Inde: IEEE, 2009, pp. 268–275, IST FP7 IP
SOA4All.

[9] M. Aldinucci, M. Danelutto, and P. Kilpatrick, “Autonomic manage-
ment of non-functional concerns in distributed and parallel application
programming,” in Proc. of Intl. Parallel and Distributed Processing
Symposium (IPDPS). Rome, Italy: IEEE, May 2009.

[10] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel,
and R. Quilici, Grid Computing: Software Environments and Tools.
Springer-Verlag, January 2006, ch. Programming, Deploying, Compos-
ing, for the Grid, ISBN 978-1-85233-998-2.

[11] F. Baude, V. Legrand-Contes, and V. Lestideau, “Large-scale service de-
ployment - application to OSGi,” in IARIA 3rd International conference
on Autonomic and Autonomous Services (ICAS 2007). IEEE Computer
Society Press, june 2007, pp. 19–26.

[12] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio,
and C. Pérez, “GCM: a grid extension to Fractal for autonomous
distributed components,” Annals of Telecommunications, vol. 64, no.
1-2, pp. 5–24, 2009.

[13] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The Fractal Component Model and its Support in Java,” Software
Practice and Experience (SPeE), special issue on “Experiences with
Auto-adaptive and Reconfigurable Systems, vol. 36, 2006.

[14] F. Baude, D. Caromel, L. Henrio, and P. Naoumenko, A Flexible Model
And Implementation Of Component Controllers, ser. Coregrid. Springer,
2008, ISBN 978-0-387-78447-2.

[15] F. Baude, L. Henrio, and P. Naoumenko, “Structural reconfiguration:
an autonomic strategy for GCM components,” in 5th International
Conference on Autonomic and Autonomous Systems(ICAS 2009). IEEE
Xplore, 2009.

[16] S. Agarwala, Y. Chen, D. Milojicic, and K. Schwan, “QMON: QoS-
and utility-aware monitoring in enterprise systems,” in The 3rd IEEE
International Conference on Autonomic Computing. Citeseer, 2006,
pp. 124–133.

[17] T. Parsons, A. Mos, M. Trofin, T. Gschwind, and J. Murphy, “Extracting
interactions in component-based systems,” IEEE Trans. Software Eng.,
vol. 34, no. 6, pp. 783–799, 2008.

[18] T. Parsons, A. Mos, and J. Murphy, “Non-intrusive end-to-end runtime
path tracing for J2EE systems,” IEE Proceedings Software, vol. 153,
no. 4, p. 149, 2006.

[19] M. Johnson, “Monitoring and diagnosing applications with ARM 4.0,”
in Int. CMG Conference, Computer Measurement Group. Citeseer,
2004, pp. 473–484.

[20] J. Turner, D. Bacigalupo, S. Jarvis, D. Dillenberger, and G. Nudd,
“Application Response Measurement of Distributed Web Services,”
International Journal of Computer Resource Measurement, vol. 108,
pp. 45–55, 2002.

[21] J. Schaefer, “An Approach for Fine-Grained Web Service Performance
Monitoring,” Lecture Notes in Computer Science, vol. 4025, p. 169,
2006.

[22] M. Schmid, M. Thoss, T. Termin, and R. Kroeger, “A generic
application-oriented performance instrumentation for multi-tier environ-
ments,” in IEEE Intl. Symposium on Integrated Network Management.
Citeseer, 2007, pp. 304–313.


