
Flexible SOA Lifecycle on the Cloud using SCA

Cristian Ruz, Françoise Baude, Bastien Sauvan
INRIA Sophia Antipolis Méditerranée

CNRS, I3S, Université de Nice Sophia Antipolis
France

{First.Last}@inria.fr

Adrian Mos, Alain Boulze
INRIA Rhône Alpes

Grenoble
France

{First.Last}@inria.fr

Abstract—We present an integrated approach to design,
monitor and manage the lifecycle of applications based on the
Service Oriented Architecture (SOA) principles and capable
of taking advantage of cloud computing environments. The
integrated framework takes profit of publicly available open
source tools and standards in an effective and coherent way,
and covers the steps from business and architectural design
of the application, to deployment and runtime support. We
exemplify our approach with a walkthrough in a simple yet
illustrative scenario.

Keywords-Service Oriented Architecture, SCA, Design, Mon-
itoring, Cloud Computing

I. INTRODUCTION

As identified in the “Hype Cycle for Emerging Technolo-
gies 2009” [1], Cloud Computing technologies will reach in
two to five years the “plateau” of mainstream adoption. As
enterprises seek to consume their IT services in the most
cost-effective way, interest is growing for using a broad
range of infrastructure services such as computational and
storage resources from ’the cloud’ or even from multiple
and heterogeneous clouds at once, rather than from on-
premises equipments. Of course, the aim is to still run and
possibly dynamically configure and adapt legacy business
applications within such virtualised environments.

The ability to exploit cloud environments raises several
challenges, see [2]. Indeed, relying on cloud technologies
further abstracts away from concrete and effective manage-
ment tasks like resource provisioning, deployment, moni-
toring, management and performance optimizations. This
is good for end-users but it is more demanding for the
supporting tools which must still offer end-users an abstract
and multi-perspectives view [3] of the application while
giving them the ability to control it.

Emerging solutions can harness one or multiple clouds,
and tackle different concerns of the lifecycle, like (1)
dynamic resource provisioning and service packaging-
deployment (e.g. [4], [5]); (2) SLA monitoring and enforce-
ment e.g. [6]. Few research explicitly aims at providing
an integrated framework allowing the user to act upon the
whole lifecycle of the SOA application in the cloud (e.g.
[7]), and none allows the user to act upon this lifecycle
through a design-oriented view only, yet including QoS

related considerations, which is our goal. To achieve this
vision is not easy, as there is a lack of coordination and
intermanageability among the available solutions addressing
the different steps of the lifecycle management (resource
provisioning, packaging and deployment of the software
bricks, monitoring, application reconfiguration, etc).

In this paper we propose an integrated and open frame-
work for supporting flexible service management over the
cloud, by leveraging the principles of SOA. Our approach
relies on a coherent design and monitoring at each level and
has been implemented using various standards (e.g. BPMN,
SCA) and technologies of the business and infrastructure
layers, and fits a cloud environment.

II. INTEGRATED FRAMEWORK

The integrated framework we propose takes into consider-
ation all levels of SOA development [8]. We have identified
the following required capabilities:

• Tooling support to define business processes definitions
and architectural specifications.

• Synchronization between business process definitions
and architectural specifications.

• Support to express quality-of-service (QoS) constraints
and automatic generation of deployment artifacts that
include the required QoS information.

• Constant multi-level monitoring of the execution envi-
ronment and tooling support for extracting monitoring
information and updating design artifacts appropriately.

• Ability to modify the runtime configuration in order to
ensure optimal execution.

The components of the framework are separated in a
vertical approach, tackling the requirements to manage the
SOA lifeycle from business modelling to the runtime infras-
tructure. See 1.

The business model of the application is the starting
point for the SOA lifecycle. In the initial design phase
(Fig. 1 (1)), the business model is converted to an equiv-
alent architectural description. The architectural description,
possibly improved, is translated to an appropriate runtime
support, which deploys and instantiates the application on
the infrastructure.

Business Modelling

Runtime Support

Monitoring

C
oordination

Infrastructure

QoS

Initial design and deploym
ent

Deployment

Instantiation

Reconfig.

Runtime
QoS.

Feedback

Adjust.

M
onitoring + Q

oS feedback

D
esign update + reconfiguration

Monitoring

Architectural
Design

Design

(1) (2) (3)

(1)

(1)

(2)

(2)

(3)

(3)

Figure 1. Framework elements

At each level, monitoring artifacts are added to be able
to extract meaningful monitoring information at runtime
(Fig. 1 (2)). The goal is to provide feedback from the
infrastructure level to the runtime and architectural design
levels, allowing the manager of the application to obtain a
QoS characterization. The information at each level can be
used by the person in charge of that level (i.e. system ad-
ministrator, SOA application designer, etc) to take decisions
in order to improve the performance of the application from
its particular point of view, f.e., modifying the allocation
of nodes (runtime level), or modifying the composition of
the application (design level). However, in our proposition
we also claim that the decision taking can be improved if
we provide synthetic (preferably to exhaustive) monitoring
information to the design level, so that the manager of the
SOA application can consider the information collected from
all levels to take a better decision.

The decisions taken translate in changes either in the
design itself, or in the associated deployment, which may so
require a reconfiguration phase (Fig. 1 (3)). In this phase, the
design decisions are thus propagated to the appropriate level,
keeping a consistent view. After this step, the monitoring
phase now provides QoS characterization from the updated
infrastructure. Through these phases it is possible to obtain
a continuous lifecycle management of the application.

To achieve this general working, this paper describes our
solution which allows the various levels to meaningfully
interact.

The interaction between the components of the frame-
work is coordinated by the use of an SOA metamodel.
The specific representations used at each level are con-
verted to and from this metamodel in order to provide an
effective two-way communication among the actual tools

BPMN Editor

GCM Runtime

BEP
Monitoring

M
angrove C

ore (SO
A m

etam
odel)

Infrastructure

QoS

GCM
Monitoring

SCA Editor + extensions

Figure 2. Tooling support implementing the framework. SOA Editors
are connected with the Runtime Support and Monitoring through the SOA
metamodel

composing the framework and keeping a coherent, always-
in-sync representation at the different levels. The use of the
metamodel provides flexibility to the framework as new tools
and runtime platforms can be added by programming the
required transformations, giving a broader range of options
for SOA management.

III. TOOLING AND RUNTIME SUPPORT

We present the tooling and runtime support that we have
used in the implementation of our framework for flexible
SOA lifecycle management in the cloud.

A. Tooling Landscape

In the context of SOA, the Eclipse Foundation offers
open-source tools for a variety of purposes ranging from
software development to architecture design to business
process definition. In particular the Eclipse SOA top-level
project [9] provides editing tools like the BPMN Modeler
[10], the SCA Tools Editor [11] and the Mangrove SOA
Modeling Framework [12].

The BPMN Modeler [10] is a business process diagram
editor for business analysts implementing the BPMN speci-
fications. The SCA Tools project [11] is a toolset for design-
ing SCA composites [13], including code generation and
deployment support for several SCA runtimes. Both editors
provide extension capabilities that are leveraged through the
use of the Mangrove integration project. The Mangrove SOA
Modeling Framework [12] serves as a central Eclipse SOA
modeling container useful for existing and upcoming SOA
editors and runtime platforms. Mangrove employs a simple
and extendable SOA metamodel as its core, providing a

consistent, always-in-sync representation of common SOA
artifacts.

The core SOA metamodel used in Mangrove is based
on the Eclipse Modeling Framework (EMF) [14] and it
contains the SOA elements and their inter-relations, enabling
the storing of “distilled” SOA elements used by different
editors and tools. The use of EMF facilitates the bidirectional
transformations between Eclipse editors and tools and the
Mangrove core as the vast majority of Eclipse projects use
EMF. Besides contributing to the actual Mangrove core,
we have created a collection of Mangrove plugins for bi-
directional conversions between the core and the SCA Edi-
tor, between the editor and the GCM/Proactive runtime, as
well as for updating the editors with monitoring information.

B. Runtime Support

The runtime support for the application is based on the
GCM/ProActive middleware. GCM/ProActive is the imple-
mentation of the Grid Component Model (GCM) [15] over
the ProActive grid/cloud middleware [16], which provides a
programming model based on asynchronous active objects
and futures. GCM is an extension of the Fractal component
model [17], that includes the notion of collective multi-
cast/gathercast interfaces, and the notion of Virtual Nodes
(VN) as an abstraction for the deployment of distributed
applications.

The VN abstraction is used to refer to the location where
the GCM components will be deployed without actually
specifying a physical node, and delaying this association
to the moment when the actual resources are available. The
VN abstraction allows to separate the deployment concerns
from the actual resources. The ProActive Scheduler [16] is
an application that allows to manage tasks over distributed
resources and can gather and relinquish nodes launched on
desktop computers, clusters, grid or cloud environments,
while also allowing to monitor their state. Dynamic node
provisioning is thus enacted through this manager.

For monitoring purposes, GCM components provide a
monitoring interface that allows an external application to
connect to any GCM component and obtain QoS values,
as well as to insert customized probes for reporting metric
values [18].

Runtime management of the application is possible using
PAGCMScript, an extension of FScript [19], that can be
used for reconfiguring and introspecting GCM-based com-
ponent architectures, possibly instantiating new components
on (new) VNs. GCM components expose an interface for
receiving PAGCMScript commands and execute them using
an embedded PAGCMScript engine.

IV. TOOLING AND RUNTIME INTEGRATION

The tooling elements and the runtime support are used
in the continuous loop of the framework, realizing our

integrated approach for a flexible SOA lifecycle management
in the cloud.

Figure 2 shows the elements described, and their role
by comparison to Figure 1. The solid arrows indicate the
actual connections and communication direction between the
elements of the framework and the Mangrove Core, which
are implemented as transformation plug-ins, as well as the
collection of monitoring data from the infrastructure level
into the GCM runtime support. The dashed lines indicate
the conceptual relationships that are obtained as a result of
the interactions of the different elements of the framework.

A. Initial design and deployment phases

Starting from the BPMN editor, a BPMN diagram spec-
ifying the business process definition of the application is
converted to an SCA diagram, and an initial architectural
view is obtained in the SCA Editor. This process relies on the
intermediate representation used by the Mangrove Core and
provides a basic equivalent SCA view. Using the SCA editor,
the designer of the application may adjust the architecture,
for example, by introducing additional components or defin-
ing external dependencies, refining the architecture. These
modifications are reflected in the intermediate representation
of Mangrove.

Using the SCA Editor and a plugable extension to this
editor, the SCA diagram is augmented with VN names.
This is a required extension, as the notion of nodes and
deployment are not part of the SCA specification. The
association that we introduce at this point, allows to establish
a relationship SCA↔VN. From this augmented description,
an equivalent GCM ADL1 descriptor can be generated.
The GCM ADL descriptor contains the GCM components
obtained from the original SCA description, their bindings,
and the VNs where they will be deployed, thus offering
a vision obtained directly from the architectural design,
and at the same time closer to infrastructure concerns. The
GCM ADL description, moreover, provides a model where
monitoring and reconfiguration capabilities can be added to
the components, which will be important at runtime.

At deployment time, the Scheduler is requested to pro-
vision the actual nodes where the components will be
deployed, so establishing the relationship VN↔nodes. This
relationship becomes available through the GCM monitoring
interface. Both relationships are a key step to ensure the
correct propagation of monitoring data from the application
and the infrastructure, to the appropriate representation in
the editors. They also allow to separate the deployment
requirements (which are known to the designer of the
application), from the actual available resources (which are
known to a system administrator).

1Architecture Description Language

B. Monitoring Feedback phase

The GCM description obtained allows to introduce mon-
itoring concerns in the components. Being used as an
intermediate layer between design and infrastructure, the
monitoring interface of GCM components allows to insert
sensors that can measure QoS metrics related to the in-
teraction between the components (f.e., response time of
requests), and also related to infrastructure details (f.e., CPU
load, free memory).

The SCA Editor can receive and display monitoring
information obtained from the runtime through the use of
specialized plug-ins extracting data from the monitoring
sensors that communicate their measurements to a central-
ized Basic Event Processor (BEP). The BEP performs basic
data processing operations such as storing and aggregating
events, and query operations. Note that the description of
the BEP is out of the scope of this paper.

Concretely, the monitoring interface of GCM components
is used by the BEP to collect data about the application
and about the infrastructure. This monitored data plus the
relationships SCA↔VN and VN↔nodes are inserted in
the Mangrove intermediate model, from which they can
be represented back in the SCA Editor, thus offering an
integrated runtime view of the deployed application.

C. Design modification and reconfiguration

From the integrated view, and based on the monitoring
feedback information, an administrator can decide to make a
modification on the application. These modifications may in-
clude architectural changes like the modification of bindings
or the addition of new SCA components; or changes related
to the infrastructure like the migration of a component to
another infrastructure, f.e., by changing the VN associated
to a component.

Once a modification is decided in the editor, it must be
reflected in the deployed application. This is achieved by
executing reconfigurations on the running application. As
previously mentioned, GCM components expose a recon-
figuration interface that allows to execute PAGCMScript
commands that describe reconfiguration actions.

D. Framework Summary

The integration of the different phases allows us to provide
most of the capabilities outlined in Section II:

• In the Initial Design and Deployment phase, the Busi-
ness Modelling tool (in this case, the BPMN Editor)
and the Architectural Design tool (in this case the
SCA Editor), allow to describe the business process
definitions and the architectural specifications.

• Using the intermediate representation, in this case,
the representation in the Mangrove Core, the SCA
view is obtained in a coherent way from the BPMN
specification.

U
se

r Email
Brochure
Service

Tr
av

el

Se
rv

ic
e

Get
Weather

Get
Hotel Rec.

Create
Brochure

Send
Email

Figure 3. BPMN diagram of the Travel Service.

• The GCM runtime supports the dynamic insertion of
monitoring elements that are able to check QoS con-
straints. Using this, a given constraint expressed at the
design level in the SCA Editor can be reflected into
a runtime constraint that can be checked in the GCM
components. However, the actual insertion process re-
lies on predefined elements to perform the constraint
checking instead of automatically generated ones.

• The integration of the GCM monitoring interfaces, the
BEP monitoring support, and the Mangrove Core repre-
sentation allows to monitor each level of the application
and surmount the monitoring information collected to
a synthesized view on the SCA Editor.

• The dynamic reconfiguration capability of GCM com-
ponents and their integration with the Mangrove Core
representation allows to reflect modifications described
on the upper levels in a dynamic way.

V. SCENARIO-BASED WALKTHROUGH

We illustrate our integrated approach for managing the
lifecycle of an SOA-based application with a scenario that
follows the steps from the business and architectural design
of the application to the deployment and runtime infrastruc-
ture, then obtaining back the runtime details on the design
view, and finally triggering adaptations from the design level
to the infrastructure level.

A. Scenario description

The scenario represents a travel service. In this context, a
customer requests information about a travel destination, and
the application works to provide updated information about
the weather and proposed hotel acommodations according
to the customer budget in a brochure in PDF format, which
is sent via email. The weather and hotel information are
obtained via external services, and the customized brochure
composition process is run as part of the service in a
cloud infrastructure. Once the customer chooses his prefer-
ences, (destination, budget range, email address) the service
collects the information, starts the brochure composition
request, and upon finishing the process, an email server is
contacted to send the finalized brochure.

B. Design and Deployment Phase

The business analyst uses the BPMN editor to create the
description of the process, in Figure 3, from which the

Travel Composite

Travel
Service Brochure

Composer

Email
Brochure
Service

SMTP
Server

Weather
Service

Hotel Rec.
Service

Figure 4. Initial SCA view of the Travel Service

Travel Composite

Travel
Service

Brochure
Composer

Brochure
Composer

Weather
WS

Hotel Recom.
WS

SMTP
Server

Email
Brochure
Service

Figure 5. SCA view for the design phase.

Mangrove transformation creates a basic SCA description,
shown in Figure 4. The architecture designer modifies this
description by defining the Weather, Hotel, and Mail service
components as external services. Notice that these modi-
fications, although reflected in the Mangrove intermediate
model, do not need to be reflected in the BPMN descrip-
tion as they do not change the business definition of the
application.

The designer defines the implementation and protocols to
be used by the SCA components. In this example, the Travel
Service component is associated to a BPEL orchestration;
the Brochure Composer is assigned to a Java library. The
Brochure Composer is made dependent on the Mail service,
as the Java library is capable to communicate with the
Mail interface. Finally, the designer adds a second Brochure
Composer in order to balance the request load between them.
This load balance behaviour must be provided by the Travel
Service component. The obtained design is shown in Figure
5.

Using the SCA editor, each SCA component is associated
with a VN, introducing deployment concerns in the lifecycle
for the first time. The “Travel Composite” and the “Travel
Service” components are associated to VN manager and
each “Brochure Composer” is associated respectively to VNs
workers-1 and workers-2 (Fig. 6).

From the SCA+VN description, a GCM ADL descriptor
is generated containing the equivalent description expressed
in the GCM model (Fig. 6). Using the GCM ADL descriptor,
the Scheduler is called to obtain a set of physical nodes and
associate them with the declared VNs (Fig. 7).

A holistic view of the relationship between design, run-
time, and infrastructure levels is shown in Figure 8, con-

Travel
Service

Travel Composite

Brochure
Composer 1

Brochure
Composer 2

Weather
WS

Hotel Recom.
WS

SMTP
Server

Monitoring

Email
Brochure
Service

{VN:workers-1}

{VN:workers-2}

{VN:manager}

{VN:manager}

Reconfiguration

Figure 6. GCM view of the Travel Service example with annotated VNs

Node: A

Node: B

Node: C

VN: manager

VN: workers-2

VN: workers-1

Figure 7. Instantiation on nodes obtained from the ProActive Scheduler.
VNs are indicated by dashed lines.

Travel Composite

TS

BC

BC

Weather
WS

Hotel Recom.
WS

SMTP
Server

Email
Brochure
Service

TS BC1

BC2

Monitoring

Node: A

Node: B
Node: C

VN: manager

VN: workers-2

Reconf.

+ Virtual Nodes

+Nodes ProActive
Scheduler

VN: workers-1

BPMN2SCA
+ Design
customiz.

SCA design

BPMN design

GCM
Runtime

Infrastructure
Node: D

U
se

r Email
Brochure
Service

Tr
av

el

Se
rv

ic
e Weather Hotel Brochuer Email

Figure 8. From design to deployment

cretizing the interactions presented in Figure 2.

C. Monitoring Phase

The monitoring infrastructure is added as the application
is deployed and it is available through the GCM Monitoring

interfaces. In this case, the monitoring infrastructure at the
level of the GCM components consists of event listeners in
each GCM component that detect the interaction between
the components and provide an “Average Respone Time”
metric; and also include sensors in each GCM component
that report the CPU load and hostname of the node where
the component is running. These values are exposed through
the monitoring interface of each GCM component.

The BEP engine retrieves the monitoring information
from the monitoring interfaces of the GCM component
and allows the Mangrove core to associate runtime metrics
(response time), deployment details (physical nodes used),
and infrastructure data (CPU utilization) to each SCA com-
ponent in the design view. The relationship between GCM
components, VNs and physical nodes can thus be retrieved
and the BEP engine can identify the source of the monitored
QoS metrics at each level, and update them in the SOA
metamodel so that they properly updated in the SCA Editor.
The manager of the application obtains the QoS values for
each SCA component in accordance to the infrastructure.
This relationship is shown in Figure 9.

D. Reconfiguration Phase

From the integrated view of design and monitored in-
formation, the manager of the application can see that the
component “BC2” is taking too much time to create the
file, while “BC1” takes much less time with a lower CPU
load. This problem may be caused, for instance, by a high
demand of requests provoking contention on the composer,
or because the node “C” has limited computing power for
composing a PDF file.

The manager decides to migrate “BC2” to another node
to solve the problem, and changes the VN relationship for
“BC2” in the SCA Editor for a VN called workers-hp VN,
which hosts nodes with better capabilities. Upon acknowl-
edging the modification, a PAGCMScript script is executed
that executes the migration. The migration of a component
implies stopping the component “BC2”, obtaining a new
node from the Scheduler for the workers-hp VN, execute
the migration from the old node to the new one, updating
the bindings of “BC2” and finally restarting the component
“BC2”.

The script makes a request to the Scheduler to provide a
new node and, once the new node D is obtained, it migrates
the component and restarts it in node D.

Note that we are not strictly defining how the PAGCM-
Script is constructed: it may be a custom script written by
the designer of the application, a predefined template script
complemented with the editor, or automatically generated
from the differences in the previous and the current designs.
Figure 10 shows the modifications from the design level to
the infrastructure level. The old node C is not part of the used
infrastructure anymore and could be relinquished through the
Scheduler. The infrastructure changes are backpropagated

Travel Composite

TS

BC2

BC1

TS BC1

BC2

Monitoring

A

B
C

Reconf.

CPU, Load, Memory

Max/Min/Avg Resp. Time
Availability

AvgRT: 5s.
Node: B

CPU: 80%
AvgRT: 10s.

Node: A
CPU: 20%

AvgRT: 30s.
Node: C

CPU: 100%

GCM/SCA
Runtime

SCA design

Infrastructure

D

Figure 9. Monitoring from infrastructure to design

Travel Composite

TS

BC2

BC1

TS BC1

BC2

Monitoring

A

B

Reconf.

"Migrate to 'workers-hp'"

GCM/SCA
Runtime

SCA design

Infrastructure

Trigger GCMScript on
associated component

Request new node +
propagate modifications

D

DC

VN: workers-hp

VN: workers-2

VN: workers-1

VN: manager

Figure 10. Reconfiguration reflected in infrastructure change.

upwards, so that the monitoring framework now reports the
QoS values from the new node and the SCA design view is
correctly updated.

The manager of the application, now receiving the QoS
values for the updated infrastructure, and wanting to profit
of the new infrastructure, decides to add a third “Brochure
Composer”. The manager modifies the design and adds a
new “BC3” component associating it with the high per-
forming workers-hp VN. The modification is propagated to

Travel Composite

TS

BC3

BC1

TS
BC1

BC3

Monitoring

A

B

Reconf.

"Add BC"

GCM/SCA
Runtime

SCA design

Infrastructure

Trigger GCMScript
reconf.

Request new node +
propagate modifications

D

E

BC2

BC2

CVN: workers-1

VN: workers-hpVN: manager E

Figure 11. Design modification reflected in infrastructure change

the GCM ADL description and enacted through a PAGCM-
Script. The script ask the Scheduler to obtain a new node
from the workers-hp VN which, depending on the con-
figuration of the VN, can include one or more nodes.
Assuming that a different node, called “E” is obtained,
then the script deploys the component “BC3”, creates the
appropriate bindings, and starts it. The modifications made
in the design level are now reflected in the infrastructure
level, and the monitoring information obtained in the editors
is now consistent with the new infrastructure, as shown in
Figure 11.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we have described an integrated approach for
managing the lifecycle of SOA-based applications using an
SCA design model integrated with runtime and infrastructure
concerns, and that can be deployed in a cloud environment.
The approach takes profit of public available open source
tools and standards and integrates them in a coherent way
from the design to the deployment steps, providing moni-
toring and management capabilities at runtime in all layers.
This work concretizes the approach presented in [8] and can
be extended to incorporate additional features of the SOA
model. Most of the current tooling is already available for
implementing the described integrated approach.

Starting from this integration basis, the next steps are to
improve, i.e., to better automate and generalise the expres-
sion of crosscutting concerns in deployement, monitoring
and management. In particular, we plan to improve the re-
sources acquisition process by allowing to describe complex
requirements and guide the provision of nodes from the

Resource Manager to the real needs of the application. For
example, specifying requisites like “Obtain a node with X%
availability, Y -core CPU and a cost of no more than $Z per
hour”.

Another remaining step is to properly incorporate the
description of SLA requirements in the initial and recon-
figuration phases, and use the monitoring features to trigger
predefined actions for notification or prevention, that can be
needed to enforce compliance to an SLA. This step requires
a proper means to translate constraint that may be described
already in the business process level and to map them to a
design element in the architectural specification. Once the
design element is associated to a concrete constraint, we
plan to use the dynamic capabilities of GCM components to
insert elements that are able to check these constraints.

REFERENCES

[1] Gartner Inc., “Gartner’s hype cycle special report for 2009,”
http://www.gartner.com/it/page.jsp?id=1124212, July 2009.

[2] K. Sripanidkulchai, S. Sahu, Y. Ruan, A. Shaikh, and C. Do-
rai, “Are clouds ready for large distributed applications?”
SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 18–23, 2010.

[3] R. Schmidt, “Perspectives for moving business processes into
the cloud,” in BPMDS 2010 and EMMSAD 2010, ser. LNBIP,
pp. 49–61.

[4] R. Mietzner, T. Unger, and F. Leymann, “Cafe: A generic
configurable customizable composite cloud application frame-
work,” in OTM 2009, ser. LNCS, 2009, vol. 5870.

[5] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-oriented
cloud computing architecture,” 3rd Intl. Conf. on Information
Technology: New Generations, 2010.

[6] A. Chazalet, “Service level checking in the cloud computing
context,” in 3rd Int. Conf. on Cloud Computing, 2010.

[7] C. Chapman, W. Emmerich, F. Marquez, S. Clayman, and
A. Galis, “Software architecture definition for on-demand
cloud provisioning,” in HPDC’10. ACM, pp. 61–72.

[8] A. Mos, A. Boulze, S. Quaireau, and C. Meynier, “Multi-
layer perspectives and spaces in SOA,” in 2nd Intl. Workshop
on Syst. Development in SOA environments, 2008.

[9] “Eclipse SOA Project,” http://www.eclipse.org/soa/.

[10] “Eclipse BPMN,” http://www.eclipse.org/bpmn/.

[11] “Eclipse SCA Tools,” http://www.eclipse.org/stp/sca/.

[12] “Eclipse Mangrove,” http://www.eclipse.org/mangrove/.

[13] “Service Component Architecture Spec-
ifications,” http://www.osoa.org/display/
Main/Service+Component+Architecture+Specifications,
March 2007.

[14] “Eclipse Modeling Framework,” http://www.eclipse.org/emf/.

[15] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov,
L. Henrio, and C. Pérez, “GCM: A Grid Extension to
Fractal for Autonomous Distributed Components,” Annals of
Telecommunications, vol. 64, no. 1, pp. 5–24, 2009.

[16] “Proactive Parallel Suite,” http://proactive.inria.fr.

[17] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani, “The FRACTAL component model and its support
in Java: Experiences with Auto-adaptive and Reconfigurable
Systems,” Softw. Pract. Exper., vol. 36, no. 11-12, pp. 1257–
1284, 2006.

[18] C. Ruz, F. Baude, and B. Sauvan, “Component-
based generic approach for reconfigurable management
of component-based soa applications,” in Proceedings of
the 3rd International Workshop on Monitoring, Adaptation
and Beyond, ser. MONA ’10. New York, NY,
USA: ACM, 2010, pp. 25–32. [Online]. Available:
http://doi.acm.org/10.1145/1929566.1929570

[19] P.-C. David, T. Ledoux, M. Léger, and T. Coupaye, “FPath
and FScript: Language support for navigation and reliable
reconfiguration of Fractal architectures,” Annals of Telecom-
munications, vol. 64, pp. 45–63, 2009.

